Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Annu Rev Biophys ; 51: 157-179, 2022 05 09.
Article in English | MEDLINE | ID: mdl-34982572

ABSTRACT

Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed.


Subject(s)
Proteins , Macromolecular Substances , Mass Spectrometry/methods , Proteins/chemistry
2.
Int J Mol Sci ; 22(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450834

ABSTRACT

Actin is an essential element of both innate and adaptive immune systems and can aid in motility and translocation of bacterial pathogens, making it an attractive target for bacterial toxins. Pathogenic Vibrio and Aeromonas genera deliver actin cross-linking domain (ACD) toxin into the cytoplasm of the host cell to poison actin regulation and promptly induce cell rounding. At early stages of toxicity, ACD covalently cross-links actin monomers into oligomers (AOs) that bind through multivalent interactions and potently inhibit several families of actin assembly proteins. At advanced toxicity stages, we found that the terminal protomers of linear AOs can get linked together by ACD to produce cyclic AOs. When tested against formins and Ena/VASP, linear and cyclic AOs exhibit similar inhibitory potential, which for the cyclic AOs is reduced in the presence of profilin. In coarse-grained molecular dynamics simulations, profilin and WH2-motif binding sites on actin subunits remain exposed in modeled AOs of both geometries. We speculate, therefore, that the reduced toxicity of cyclic AOs is due to their reduced configurational entropy. A characteristic feature of cyclic AOs is that, in contrast to the linear forms, they cannot be straightened to form filaments (e.g., through stabilization by cofilin), which makes them less susceptible to neutralization by the host cell.


Subject(s)
Actins/chemistry , Actins/metabolism , Bacterial Toxins/metabolism , Protein Multimerization , Actin Cytoskeleton/metabolism , Animals , Bacterial Toxins/chemistry , Binding Sites , Catalysis , Cell Line, Tumor , Conserved Sequence , Humans , Kinetics , Models, Molecular , Protein Binding , Protein Conformation , Vibrio cholerae/metabolism
3.
Proc Natl Acad Sci U S A ; 116(32): 16028-16035, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31253706

ABSTRACT

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNALeu(UUR) nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD+/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD+/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Epigenome , Acetyl Coenzyme A/metabolism , Cell Line , Histones/metabolism , Humans , Metabolome , Mitochondria/metabolism , NAD/metabolism , Transcription, Genetic
4.
Structure ; 26(12): 1651-1663.e3, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30293810

ABSTRACT

Until recently, a major limitation of hydrogen-deuterium exchange mass spectrometry (HDX-MS) was that resolution of deuterium localization was limited to the length of the peptide generated during proteolysis. However, electron transfer dissociation (ETD) has been shown to preserve deuterium label in the gas phase, enabling better resolution. To date, this technology remains mostly limited to small, already well-characterized proteins. Here, we optimize, expand, and adapt HDX-MS tandem MS (MS/MS) capabilities to accommodate histone and nucleosomal complexes on top-down HDX-MS/MS and middle-down HDX-MS/MS platforms and demonstrate that near site-specific resolution of deuterium localization can be obtained with high reproducibility. We are able to study histone tail dynamics in unprecedented detail, which have evaded analysis by traditional structural biology techniques for decades, revealing important insights into chromatin biology. Together, the results of these studies highlight the versatility, reliability, and reproducibility of ETD-based HDX-MS/MS methodology to interrogate large protein and protein/DNA complexes.


Subject(s)
Histones/chemistry , Histones/metabolism , Nucleosomes/metabolism , Deuterium Exchange Measurement , Models, Molecular , Nucleosomes/chemistry , Protein Conformation , Tandem Mass Spectrometry
5.
Mol Biosyst ; 13(12): 2660-2671, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29058739

ABSTRACT

ADP-ribosylation is a protein post-translational modification catalyzed by ADP-ribose transferases (ARTs). ART activity is critical in mediating many cellular processes, and is required for DNA damage repair. All five histone proteins are extensively ADP-ribosylated by ARTs upon induction of DNA damage. However, how these modifications aid in repair processes is largely unknown, primarily due to lack of knowledge about where they site-specifically occur on histones. Here, we conduct a comprehensive analysis of histone Asp/Glu ADP-ribosylation sites upon DNA damage induced by dimethyl sulfate (DMS). We also demonstrate that incubation of cell nuclei with NAD+, as has been done previously in the literature, leads to spurious ADP-ribosylation levels of histone proteins. Altogether, we were able to identify 30 modification sites, 20 of which are novel. We also quantify the abundance of these modification sites during the course of DNA damage insult to identify which sites are critical for mediating repair. We found that every quantifiable site increases in abundance over time and that each identified ADP-ribosylation site is located on the surface of the nucleosome. Together, the data suggest specific Asp/Glu residues are unlikely to be critical for DNA damage repair and rather that this process is likely dependent on ADP-ribosylation of the nucleosomal surface in general.


Subject(s)
Histones/metabolism , Nucleosomes/metabolism , ADP-Ribosylation/genetics , ADP-Ribosylation/physiology , Animals , DNA Damage/genetics , DNA Damage/physiology , Humans , Tandem Mass Spectrometry
6.
Epigenetics Chromatin ; 10(1): 34, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28683815

ABSTRACT

BACKGROUND: Middle-down mass spectrometry (MS), i.e., analysis of long (~50-60 aa) polypeptides, has become the method with the highest throughput and accuracy for the characterization of combinatorial histone posttranslational modifications (PTMs). The discovery of histone readers with multiple domains, and overall the cross talk of PTMs that decorate histone proteins, has revealed that histone marks have synergistic roles in modulating enzyme recruitment and subsequent chromatin activities. Here, we demonstrate that the middle-down MS strategy can be combined with metabolic labeling for enhanced quantification of histone proteins and their combinatorial PTMs in a dynamic manner. METHODS: We used a nanoHPLC-MS/MS system consisting of hybrid weak cation exchange-hydrophilic interaction chromatography combined with high resolution MS and MS/MS with ETD fragmentation. After spectra identification, we filtered confident hits and quantified polypeptides using our in-house software isoScale. RESULTS: We first verified that middle-down MS can discriminate and differentially quantify unlabeled from heavy labeled histone N-terminal tails (heavy lysine and arginine residues). Results revealed no bias toward identifying and quantifying unlabeled versus heavy labeled tails, even if the heavy labeled peptides presented the typical skewed isotopic pattern typical of long protein sequences that hardly get 100% labeling. Next, we plated epithelial cells into a media with heavy methionine-(methyl-13CD3), the precursor of the methyl donor S-adenosylmethionine and stimulated epithelial to mesenchymal transition (EMT). We assessed that results were reproducible across biological replicates and with data obtained using the more widely adopted bottom-up MS strategy, i.e., analysis of short tryptic peptides. We found remarkable differences in the incorporation rate of methylations in non-confluent cells versus confluent cells. Moreover, we showed that H3K27me3 was a critical player during the EMT process, as a consistent portion of histones modified as H3K27me2K36me2 in epithelial cells were converted into H3K27me3K36me2 in mesenchymal cells. CONCLUSIONS: We demonstrate that middle-down MS, despite being a more scarcely exploited MS technique than bottom-up, is a robust quantitative method for histone PTM characterization. In particular, middle-down MS combined with metabolic labeling is currently the only methodology available for investigating turnover of combinatorial histone PTMs in dynamic systems.


Subject(s)
Histone Code , Histones/chemistry , Mass Spectrometry/methods , Proteomics/methods , Chromatography, High Pressure Liquid/methods , HeLa Cells , Humans
7.
Expert Rev Proteomics ; 14(5): 409-418, 2017 05.
Article in English | MEDLINE | ID: mdl-28395554

ABSTRACT

INTRODUCTION: Protease activity plays a key role in a wide variety of biological processes including gene expression, protein turnover and development. misregulation of these proteins has been associated with many cancer types such as prostate, breast, and skin cancer. thus, the identification of protease substrates will provide key information to understand proteolysis-related pathologies. Areas covered: Proteomics-based methods to investigate proteolysis activity, focusing on substrate identification, protease specificity and their applications in systems biology are reviewed. Their quantification strategies, challenges and pitfalls are underlined and the biological implications of protease malfunction are highlighted. Expert commentary: Dysregulated protease activity is a hallmark for some disease pathologies such as cancer. Current biochemical approaches are low throughput and some are limited by the amount of sample required to obtain reliable results. Mass spectrometry based proteomics provides a suitable platform to investigate protease activity, providing information about substrate specificity and mapping cleavage sites.


Subject(s)
Mass Spectrometry/methods , Peptide Hydrolases/chemistry , Proteolysis , Proteomics/methods , Animals , Humans , Peptide Hydrolases/metabolism , Substrate Specificity
8.
J Vis Exp ; (111)2016 05 17.
Article in English | MEDLINE | ID: mdl-27286567

ABSTRACT

Nucleosomes are the smallest structural unit of chromatin, composed of 147 base pairs of DNA wrapped around an octamer of histone proteins. Histone function is mediated by extensive post-translational modification by a myriad of nuclear proteins. These modifications are critical for nuclear integrity as they regulate chromatin structure and recruit enzymes involved in gene regulation, DNA repair and chromosome condensation. Even though a large part of the scientific community adopts antibody-based techniques to characterize histone PTM abundance, these approaches are low throughput and biased against hypermodified proteins, as the epitope might be obstructed by nearby modifications. This protocol describes the use of nano liquid chromatography (nLC) and mass spectrometry (MS) for accurate quantification of histone modifications. This method is designed to characterize a large variety of histone PTMs and the relative abundance of several histone variants within single analyses. In this protocol, histones are derivatized with propionic anhydride followed by digestion with trypsin to generate peptides of 5 - 20 aa in length. After digestion, the newly exposed N-termini of the histone peptides are derivatized to improve chromatographic retention during nLC-MS. This method allows for the relative quantification of histone PTMs spanning four orders of magnitude.


Subject(s)
Histones/metabolism , Animals , Chromatography, Liquid , Mass Spectrometry , Protein Processing, Post-Translational , Tandem Mass Spectrometry
9.
J Exp Biol ; 219(Pt 17): 2673-86, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27335449

ABSTRACT

Acute heat stress perturbs cellular function on a variety of levels, leading to protein dysfunction and aggregation, oxidative stress and loss of metabolic homeostasis. If these challenges are not overcome quickly, the stressed organism can die. To better understand the earliest tissue-level responses to heat stress, we examined the proteomic response of gill from Geukensia demissa, an extremely eurythermal mussel from the temperate intertidal zone of eastern North America. We exposed 15°C-acclimated individuals to an acute near-lethal heat stress (45°C) for 1 h, and collected gill samples from 0 to 24 h of recovery. The changes in protein expression we found reveal a coordinated physiological response to acute heat stress: proteins associated with apoptotic processes were increased in abundance during the stress itself (i.e. at 0 h of recovery), while protein chaperones and foldases increased in abundance soon after (3 h). The greatest number of proteins changed abundance at 6 h; these included oxidative stress proteins and enzymes of energy metabolism. Proteins associated with the cytoskeleton and extracellular matrix also changed in abundance starting at 6 h, providing evidence of cell proliferation, migration and tissue remodeling. By 12 h, the response to acute heat stress was diminishing, with fewer stress and structural proteins changing in abundance. Finally, the proteins with altered abundances identified at 24 h suggest a return to the pre-stress anabolic state.


Subject(s)
Bivalvia/metabolism , Heat-Shock Response , Proteomics/methods , Wetlands , Analysis of Variance , Animals , Cluster Analysis , Principal Component Analysis , Sus scrofa , Time Factors
10.
Mol Cell Proteomics ; 15(7): 2462-75, 2016 07.
Article in English | MEDLINE | ID: mdl-27114449

ABSTRACT

Over the past decades, protein O-GlcNAcylation has been found to play a fundamental role in cell cycle control, metabolism, transcriptional regulation, and cellular signaling. Nevertheless, quantitative approaches to determine in vivo GlcNAc dynamics at a large-scale are still not readily available. Here, we have developed an approach to isotopically label O-GlcNAc modifications on proteins by producing (13)C-labeled UDP-GlcNAc from (13)C6-glucose via the hexosamine biosynthetic pathway. This metabolic labeling was combined with quantitative mass spectrometry-based proteomics to determine protein O-GlcNAcylation turnover rates. First, an efficient enrichment method for O-GlcNAc peptides was developed with the use of phenylboronic acid solid-phase extraction and anhydrous DMSO. The near stoichiometry reaction between the diol of GlcNAc and boronic acid dramatically improved the enrichment efficiency. Additionally, our kinetic model for turnover rates integrates both metabolomic and proteomic data, which increase the accuracy of the turnover rate estimation. Other advantages of this metabolic labeling method include in vivo application, direct labeling of the O-GlcNAc sites and higher confidence for site identification. Concentrating only on nuclear localized GlcNAc modified proteins, we are able to identify 105 O-GlcNAc peptides on 42 proteins and determine turnover rates of 20 O-GlcNAc peptides from 14 proteins extracted from HeLa nuclei. In general, we found O-GlcNAcylation turnover rates are slower than those published for phosphorylation or acetylation. Nevertheless, the rates widely varied depending on both the protein and the residue modified. We believe this methodology can be broadly applied to reveal turnovers/dynamics of protein O-GlcNAcylation from different biological states and will provide more information on the significance of O-GlcNAcylation, enabling us to study the temporal dynamics of this critical modification for the first time.


Subject(s)
Chromatography, Liquid/methods , Proteome/analysis , Proteomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Boronic Acids/chemistry , Glycosylation , HeLa Cells , Humans , Isotope Labeling , Protein Processing, Post-Translational , Proteome/chemistry
11.
Mol Cell Proteomics ; 15(3): 975-88, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26785730

ABSTRACT

Histones represent a class of proteins ideally suited to analyses by top-down mass spectrometry due to their relatively small size, the high electron transfer dissociation-compatible charge states they exhibit, and the potential to gain valuable information concerning combinatorial post-translational modifications and variants. We recently described new methods in mass spectrometry for the acquisition of high-quality MS/MS spectra of intact proteins (Anderson, L. C., English, A. M., Wang, W., Bai, D. L., Shabanowitz, J., and Hunt, D. F. (2015) Int. J. Mass Spectrom. 377, 617-624). Here, we report an extension of these techniques. Sequential ion/ion reactions carried out in a modified Orbitrap Velos Pro/Elite(TM) capable of multiple fragment ion fills of the C-trap, in combination with data-dependent and targeted HPLC-MS experiments, were used to obtain high resolution MS/MS spectra of histones from butyrate-treated HeLa cells. These spectra were used to identify several unique intact histone proteoforms with up to 81% sequence coverage. We also demonstrate that parallel ion parking during ion/ion proton transfer reactions can be used to separate species of overlapping m/z that are not separated chromatographically, revealing previously indiscernible signals. Finally, we characterized several truncated forms of H2A and H2B found within the histone fractions analyzed, achieving up to 93% sequence coverage by electron transfer dissociation MS/MS. Results of follow-up in vitro experiments suggest that some of the truncated histone H2A proteoforms we observed can be generated by cathepsin L, an enzyme known to also catalyze clipping of histone H3.


Subject(s)
Histones/metabolism , Proteome/analysis , Spectrometry, Mass, Electrospray Ionization/instrumentation , Butyrates/chemistry , Genetic Variation , HeLa Cells , Histones/genetics , Humans , Protein Processing, Post-Translational
12.
J Bacteriol ; 198(5): 808-15, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26712937

ABSTRACT

UNLABELLED: For years, the S-layer glycoprotein (SLG), the sole component of many archaeal cell walls, was thought to be anchored to the cell surface by a C-terminal transmembrane segment. Recently, however, we demonstrated that the Haloferax volcanii SLG C terminus is removed by an archaeosortase (ArtA), a novel peptidase. SLG, which was previously shown to be lipid modified, contains a C-terminal tripartite structure, including a highly conserved proline-glycine-phenylalanine (PGF) motif. Here, we demonstrate that ArtA does not process an SLG variant where the PGF motif is replaced with a PFG motif (slg(G796F,F797G)). Furthermore, using radiolabeling, we show that SLG lipid modification requires the PGF motif and is ArtA dependent, lending confirmation to the use of a novel C-terminal lipid-mediated protein-anchoring mechanism by prokaryotes. Similar to the case for the ΔartA strain, the growth, cellular morphology, and cell wall of the slg(G796F,F797G) strain, in which modifications of additional H. volcanii ArtA substrates should not be altered, are adversely affected, demonstrating the importance of these posttranslational SLG modifications. Our data suggest that ArtA is either directly or indirectly involved in a novel proteolysis-coupled, covalent lipid-mediated anchoring mechanism. Given that archaeosortase homologs are encoded by a broad range of prokaryotes, it is likely that this anchoring mechanism is widely conserved. IMPORTANCE: Prokaryotic proteins bound to cell surfaces through intercalation, covalent attachment, or protein-protein interactions play critical roles in essential cellular processes. Unfortunately, the molecular mechanisms that anchor proteins to archaeal cell surfaces remain poorly characterized. Here, using the archaeon H. volcanii as a model system, we report the first in vivo studies of a novel protein-anchoring pathway involving lipid modification of a peptidase-processed C terminus. Our findings not only yield important insights into poorly understood aspects of archaeal biology but also have important implications for key bacterial species, including those of the human microbiome. Additionally, insights may facilitate industrial applications, given that photosynthetic cyanobacteria encode uncharacterized homologs of this evolutionarily conserved enzyme, or may spur development of unique drug delivery systems.


Subject(s)
Archaeal Proteins/metabolism , Haloferax volcanii/metabolism , Lipids/chemistry , Membrane Glycoproteins/metabolism , Peptide Hydrolases/metabolism , Amino Acid Motifs , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Cell Membrane , Gene Expression Regulation, Archaeal/physiology , Gene Expression Regulation, Enzymologic/physiology , Glycine/chemistry , Haloferax volcanii/cytology , Haloferax volcanii/genetics , Lipid Metabolism , Membrane Glycoproteins/genetics , Phenylalanine/chemistry , Proline/chemistry
13.
Mol Cell ; 60(5): 755-768, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26626480

ABSTRACT

Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD(+) to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD(+) binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors.


Subject(s)
DNA/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Protein Unfolding , Catalytic Domain , Crystallography, X-Ray , DNA Breaks , DNA Repair , Deuterium Exchange Measurement , Humans , Models, Molecular , Mutation , NAD/metabolism , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/genetics , Protein Structure, Secondary
14.
Anal Chem ; 87(22): 11448-54, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26505526

ABSTRACT

Label-free peptide quantification in liquid chromatography-mass spectrometry (LC-MS) proteomics analyses is complicated by the presence of isobaric coeluting peptides, as they generate the same extracted ion chromatogram corresponding to the sum of their intensities. Histone proteins are especially prone to this, as they are heavily modified by post-translational modifications (PTMs). Their proteolytic digestion leads to a large number of peptides sharing the same mass, while carrying PTMs on different amino acid residues. We present an application of MS data-independent acquisition (DIA) to confidently determine and quantify modified histone peptides. By introducing the use of low-resolution MS/MS DIA, we demonstrate that the signals of 111 histone peptides could easily be extracted from LC-MS runs due to the relatively low sample complexity. By exploiting an LTQ-Orbitrap mass spectrometer, we parallelized MS and MS/MS scan events using the Orbitrap and the linear ion trap, respectively, decreasing the total scan time. This, in combination with large windows for MS/MS fragmentation (50 m/z) and multiple full scan events within a DIA duty cycle, led to a MS scan cycle speed of ∼45 full MS per minute, improving the definition of extracted LC-MS chromatogram profiles. By using such acquisition method, we achieved highly comparable results to our optimized acquisition method for histone peptide analysis (R(2) correlation > 0.98), which combines data-dependent acquisition (DDA) and targeted MS/MS scans, the latter targeting isobaric peptides. By using DIA, we could also remine our data set and quantify 16 additional isobaric peptides commonly not targeted during DDA experiments. Finally, we demonstrated that by performing the full MS scan in the linear ion trap, we achieve highly comparable results as when adopting high-resolution MS scans (R(2) correlation 0.97). Taken together, results confirmed that histone peptide analysis can be performed using DIA and low-resolution MS with high accuracy and precision of peptide quantification. Moreover, DIA intrinsically enables data remining to later identify and quantify isobaric peptides unknown at the time of the LC-MS experiment. These methods will open up epigenetics analyses to the proteomics community who do not have routine access to the newer generation high-resolution MS/MS generating instruments.


Subject(s)
Histones/chemistry , Peptides/chemistry , Software , Chromatography, High Pressure Liquid , Proteomics , Tandem Mass Spectrometry
15.
Mol Cell Proteomics ; 14(9): 2420-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25636311

ABSTRACT

Histone post-translational modifications (PTMs) have a fundamental function in chromatin biology, as they model chromatin structure and recruit enzymes involved in gene regulation, DNA repair, and chromosome condensation. High throughput characterization of histone PTMs is mostly performed by using nano-liquid chromatography coupled to mass spectrometry. However, limitations in speed and stochastic sampling of data dependent acquisition methods in MS lead to incomplete discrimination of isobaric peptides and loss of low abundant species. In this work, we analyzed histone PTMs with a data-independent acquisition method, namely SWATH™ analysis. This approach allows for MS/MS-based quantification of all analytes without upfront assay development and no issues of biased and incomplete sampling. We purified histone proteins from human embryonic stem cells and mouse trophoblast stem cells before and after differentiation, and prepared them for MS analysis using the propionic anhydride protocol. Results on histone H3 peptides verified that sequential window acquisition of all theoretical mass spectra could accurately quantify peptides (<9% average coefficient of variation, CV) over four orders of magnitude, and we could discriminate isobaric and co-eluting peptides (e.g. H3K18ac and H3K23ac) using MS/MS-based quantification. This method provided high sensitivity and precision, supported by the fact that we could find significant differences for remarkably low abundance PTMs such as H3K9me2S10ph (relative abundance <0.02%). We performed relative quantification for few sample peptides using different fragment ions and observed high consistency (CV <15%) between the fragments. This indicated that different fragment ions can be used independently to achieve the same peptide relative quantification. Taken together, sequential window acquisition of all theoretical mass spectra proved to be an easy-to-use MS acquisition method to perform high quality MS/MS-based quantification of histone-modified peptides.


Subject(s)
Histones/isolation & purification , Peptides/chemistry , Protein Processing, Post-Translational , Proteomics/methods , Stem Cells/metabolism , Animals , Cells, Cultured , Chromatography, Liquid/methods , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Histones/metabolism , Humans , Mice , Stem Cells/cytology , Tandem Mass Spectrometry/methods , Trophoblasts/cytology , Trophoblasts/metabolism
16.
Anal Chem ; 87(6): 3129-33, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25719549

ABSTRACT

Histone proteins are key components of chromatin. Their N-terminal tails are enriched in combinatorial post-translational modifications (PTMs), which influence gene regulation, DNA repair, and chromosome condensation. Mass spectrometry (MS)-based middle-down proteomics has emerged as a technique to analyze co-occurring PTMs, as it allows for the characterization of intact histone tails (>50 aa) rather than short (<20 aa) peptides analyzed by bottom-up. However, a demonstration of its reliability is still lacking. We compared results obtained with the middle-down and the bottom-up strategy in calculating PTM relative abundance and stoichiometry. Since bottom-up was proven to have biases in peptide signal detection such as uneven ionization efficiency, we performed an external correction using a synthetic peptide library with known peptide relative abundance. Corrected bottom-up data were used as reference. Calculated abundances of single PTMs showed similar deviations from the reference when comparing middle-down and uncorrected bottom-up results. Moreover, we show that the two strategies provided similar performance in defining accurate PTM stoichiometry. Collectively, we evidenced that the middle-down strategy is at least equally reliable to bottom-up in quantifying histone PTMs.


Subject(s)
Protein Processing, Post-Translational , Proteomics/methods , Chromatography, Liquid , HeLa Cells , Humans , Tandem Mass Spectrometry
17.
J Proteome Res ; 13(12): 6152-9, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25325711

ABSTRACT

Mass spectrometry (MS) is a powerful tool to accurately identify and quantify histone post-translational modifications (PTMs). High-resolution mass analyzers have been regarded as essential for these PTM analyses because the mass accuracy afforded is sufficient to differentiate trimethylation versus acetylation (42.0470 and 42.0106 Da, respectively), whereas lower-resolution mass analyzers cannot. Noting this limitation, we sought to determine whether lower-resolution detectors are nonetheless adequate for histone PTM analysis by comparing the low-resolution LTQ Velos Pro with the high-resolution LTQ-Orbitrap Velos Pro. We first determined that the optimal scan mode on the LTQ Velos Pro is the Enhanced scan mode with respect to apparent resolution, number of MS and MS/MS scans per run, and reproducibility of label-free quantifications. We next compared the performance of the LTQ Velos Pro to the LTQ-Orbitrap Velos Pro using the same criteria for comparison, and we found that the main difference is that the LTQ-Orbitrap Velos Pro is able to resolve the difference between acetylation and trimethylation while the LTQ Velos Pro cannot. However, using heavy isotope labeled synthetic peptide standards and retention time information enables confident assignment of these modifications and comparable quantification between the instruments. Therefore, lower-resolution instruments can confidently be utilized for histone PTM analysis.


Subject(s)
Histones/metabolism , Mass Spectrometry/methods , Protein Processing, Post-Translational , Tandem Mass Spectrometry/methods , Acetylation , Amino Acid Sequence , Chromatography, Liquid/methods , HeLa Cells , Humans , Lysine/metabolism , Mass Spectrometry/instrumentation , Methylation , Peptides/metabolism , Proteomics/methods , Reproducibility of Results , Tandem Mass Spectrometry/instrumentation
18.
Front Genet ; 4: 264, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24391660

ABSTRACT

Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs). Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.

19.
Integr Comp Biol ; 52(5): 636-47, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22641835

ABSTRACT

Individuals of a broadly distributed species often experience significantly different environmental conditions depending on location. For example, the mussel Geukensia demissa occurs intertidally from the Gulf of St. Lawrence to central Florida; within this range, northern populations are exposed to temperatures cold enough to freeze the tissue, whereas southern populations can experience temperatures approaching the species' upper lethal limit. Thus, G. demissa provides an ideal system with which to study physiological variation in conspecifics occurring across a broad latitudinal range. We collected G. demissa at five sites from Maine to Florida, encompassing a range of 1900 km, and have used a proteomic approach to describe how protein expression varies in individuals from the different locations. We acclimated individuals from each site to common conditions (18°C) for 4 weeks, and exposed a subset of these to acute heat stress (40°C). We separated gill proteins using two-dimensional gel electrophoresis and quantified abundances of the resulting protein spots. Among mussels acclimated to 18°C protein, expression profiles were more similar among individuals from the same site than among sites, but there was no discernible correlation with latitude. In contrast, after acute heat stress, protein expression among mussels from different locations varied substantially, with 31 of 448 proteins changing in abundance in the northernmost (Maine) group, compared with 5-11 proteins in the four southern groups. Identification of 27 of these proteins revealed five functional clusters: chaperones, cytoskeletal proteins, oxidative stress proteins, regulatory proteins, and a translation initiation factor. Across these functional categories, the two northernmost groups, Maine and New York, showed the greatest number of proteins that changed significantly in abundance, as well as the greatest fold-change in abundance for many of the proteins. We conclude that the northern populations of G. demissa are physiologically distinct from the southern groups, and that the differences in protein-expression profiles are consistent with greater sensitivity to heat stress to the north.


Subject(s)
Bivalvia/physiology , Hot Temperature , Proteome/metabolism , Stress, Physiological , Acclimatization , Animals , Bivalvia/metabolism , Cytoskeletal Proteins/metabolism , Electrophoresis, Gel, Two-Dimensional , Environment , Florida , Geography , Gills/metabolism , Maine , Molecular Chaperones/metabolism , New York , Principal Component Analysis , Proteomics/methods , Sequence Homology, Amino Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...