Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6700): 1096-1099, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843325

ABSTRACT

Spontaneous mirror symmetry breaking by formation of chiral structures from achiral building blocks and emergent polar order are phenomena rarely observed in fluids. Separately, they have both been found in certain nematic liquid crystalline phases; however, they have never been observed simultaneously. Here, we report a heliconical arrangement of achiral molecules in the ferroelectric nematic phase. The phase is thus spontaneously both polar and chiral. Notably, the pitch of the heliconical structure is comparable to the wavelength of visible light, giving selective reflection controllable by temperature or application of a weak electric field. Despite bearing resemblance to the heliconical twist-bend nematic phase, this chiral ferroelectric nematic phase arises from electrical interactions that induce a noncollinear orientation of electric dipoles.

2.
Phys Rev E ; 109(2-1): 024702, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491706

ABSTRACT

Twist-bend (N_{tb}) and ferroelectric (N_{F}) nematic liquid crystals exhibit several novel effects and new physical properties. Here, we report experimental studies on the phase diagram and some physical properties of binary mixtures of CB9CB and RM734 mesogens. Both N-N_{tb} and N-N_{F} phase transition temperatures and the corresponding enthalpies decrease significantly and, eventually, these transitions disappear at some intermediate compositions, stabilizing wide nematic phase (N). Temperature-dependent birefringence several degrees above the N-N_{tb} phase transition shows strong director tilt fluctuations. The critical range of the fluctuations increases with the nematic range and the critical exponent is consistent with the mean field. The spontaneous polarization of RM734 decreases drastically with the addition of CB9CB mesogen. The temperature dependence of the splay elastic constant of the mixtures' high-temperature nematic (N) phase strikingly differs from that of the pristine CB9CB and RM734 mesogens. The study shows that a small inclusion of either compound has a substantial effect on the phase diagram and physical properties.

3.
Chem Commun (Camb) ; 59(100): 14807-14810, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37937977

ABSTRACT

The ferroelectric nematic phase became the centre of interest of scientists because of its unique physical properties. The uniqueness of this particular phase results in its monotropic character in all known NF materials. Here we present the very first example of a compound with an enantiotropic ferroelectric nematic phase. Compound 3JK is complementary with already well known NF materials, i.e. RM734 and DIO and is characterized by moderately high dielectric anisotropy.

4.
Phys Chem Chem Phys ; 25(18): 13061-13071, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37114748

ABSTRACT

We investigated the electrical properties of the liquid crystal compound 4-(4-nitrophenoxycarbonyl)phenyl 2,4-dimethoxybenzoate, known as RM734, exhibiting a ferroelectric nematic phase. The influence of alternating (AC) and direct (DC) current electric fields on the switching process of the polarization vector and dielectric constant of planarly aligned ferronematic and nematic phases were examined. The decrease of the real part of electric permittivity in the ferronematic phase and the creation of a ferroelectric order in the nematic phase under a DC field were demonstrated. The analysis of the results reveals the latching of the ferroelectric state. The applied DC field created a ferroelectric mode in the nematic phase. A new model of collective and molecular relaxations considering the domain structure of the ferronematic phase was proposed. The temperature and DC field dependence of dielectric properties was shown. Spontaneous polarization was measured using the field reversal technique. The spontaneous polarization value reaches the maximum at a fixed temperature.

5.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232324

ABSTRACT

Polarized beam infrared (IR) spectroscopy provides valuable information on changes in the orientation of samples in nematic phases, especially on the role of intermolecular interactions in forming the periodically modulated twist-bent phase. Infrared absorbance measurements and quantum chemistry calculations based on the density functional theory (DFT) were performed to investigate the structure and how the molecules interact in the nematic (N) and twist-bend (NTB) phases of thioether dimers. The nematic twist-bend phase observed significant changes in the mean IR absorbance. On cooling, the transition from the N phase to the NTB phase was found to be accompanied by a marked decrease in absorbance for longitudinal dipoles. Then, with further cooling, the absorbance of the transverse dipoles increased, indicating that transverse dipoles became correlated in parallel. To investigate the influence of the closest neighbors, DFT calculations were performed. As a result of the optimization of the molecular cores system, we observed changes in the square of the transition dipoles, which well corresponds to absorbance changes observed in the IR spectra. Interactions of molecules dominated by pairing were observed, as well as the axial shift of the core to each other.


Subject(s)
Liquid Crystals , Density Functional Theory , Liquid Crystals/chemistry , Models, Chemical , Phase Transition , Sulfides
SELECTION OF CITATIONS
SEARCH DETAIL
...