Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 310: 107251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678820

ABSTRACT

The cationic antimicrobial peptides PGLa and magainin 2 (Mag2) are known for their antimicrobial activity and synergistic enhancement in antimicrobial and membrane leakage assays. Further use of peptides in combinatory therapy requires knowledge of the mechanisms of action of both individual peptides and their mixtures. Here, electron paramagnetic resonance (EPR), double electron-electron resonance (DEER, also known as PELDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies were applied to study self-assembly and localization of spin-labeled PGLa and Mag2 in POPE/POPG membranes with a wide range of peptide/lipid ratios (P/L) from ∼1/1500 to 1/50. EPR and DEER data showed that both peptides tend to organize in clusters, which occurs already at the lowest peptide/lipid molar ratio of 1/1500 (0.067 mol%). For individual peptides, these clusters are quite dense with intermolecular distances of the order of ∼2 nm. In the presence of a synergistic peptide partner, these homo-clusters are transformed into lipid-diluted hetero-clusters. These clusters are characterized by a local surface density that is several times higher than expected from a random distribution. ESEEM data indicate a slightly different insertion depth of peptides in hetero-clusters when compared to homo-clusters.


Subject(s)
Antimicrobial Cationic Peptides , Lipid Bilayers , Magainins , Spin Labels , Magainins/chemistry , Magainins/pharmacology , Lipid Bilayers/chemistry , Electron Spin Resonance Spectroscopy , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
2.
Biochim Biophys Acta Biomembr ; 1860(12): 2527-2531, 2018 12.
Article in English | MEDLINE | ID: mdl-30273579

ABSTRACT

Clustering of spin-labeled cholesterol analog, 3ß-doxyl-5α-cholestane (DChl), diluted in bilayers comprised of either saturated dipalmitoyl-glycero-phosphocholine (DPPC) or unsaturated dioleoyl-glycero-phosphocholine (DOPC) phospholipids was studied. DChl molar fraction X varied between 0.005 and 0.04. EPR spectroscopy applied at low temperatures (200 K) enabled exploring magnetic dipole-dipole (d-d) interaction between spin labels. For DOPC bilayers, EPR spectra were found to broaden remarkably with X increase. The broadening was simulated for the models of 2-dimentional (2-D) clusters with enhanced local concentration, Xloc, which was several times larger than X, and for 1-dimensional (1-D) DChl clusters. The distance of closest approach in these simulations attained the intermolecular lateral distance in the membrane (~0.7 nm). For DPPC bilayers, EPR spectra showed only small broadening, which in these simulations could not be reproduced even if Xloc was taken as small as X. However strong concentration dependence was found for electron spin echo (ESE) decays. Both the EPR and ESE data for DPPC bilayers were explained within the model assuming encapsulation of DChl molecules in lipid shells so preventing them to approach each other closer than a certain distance, Rmin. The Rmin value was found to vary between ~2.5 nm and 5 nm, for X varying between 0.04 and 0.005; Xloc in these simulations was several times larger than X. So the DChl clustering in DOPC bilayers is driven by attractive lipid-mediated forces, while in DPPC bilayers long-range nanoscale lipid-mediated repulsive/attractive forces take place for distances smaller and larger Rmin, correspondingly.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Spin Labels , Electron Spin Resonance Spectroscopy , Magnetics
3.
J Phys Chem B ; 121(20): 5209-5217, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28467087

ABSTRACT

The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3ß-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.


Subject(s)
Cholestanes/chemistry , Cyclic N-Oxides/chemistry , Lipid Bilayers/chemistry , Lipids/chemistry , Electron Spin Resonance Spectroscopy , Models, Molecular , Solubility , Spin Labels , Temperature
4.
J Phys Chem B ; 119(43): 13675-9, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-25965099

ABSTRACT

Biological membranes are supposed to have heterogeneous structure containing lipid rafts-lateral micro- and nanodomains enriched in cholesterol (chol) and sphingolipids. In this work, lipid bilayers containing a small amount of the spin-labeled chol analogue 3ß-doxyl-5α-cholestane (chlstn) were studied using electron spin echo (ESE) spectroscopy, which is a pulsed version of electron paramagnetic resonance (EPR). Bilayers were prepared from an equimolecular mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with chol added at different concentrations. The ESE decays recorded at 77 K become faster with increase of chlstn concentration. The chlstn-dependent contribution to ESE decay is remarkably nonexponential; however, the logarithm of this contribution can be rescaled for different chlstn concentrations to a universal function with the rescaling factor approximately proportional to concentration. This result shows that the chlstn-dependent contribution to the ESE decay can be employed to estimate the local (at the nanometer scale of distances) chlstn concentration. Analogous rescaling behavior is also observed for the bilayers with different chol concentrations, with the rescaling factor increasing with increase of the chol concentration. This result is evidence that chlstn molecules are distributed heterogeneously in the chol-containing bilayer and form clusters with enhanced chlstn (and probably chol) local concentration. The local concentration of chlstn molecules for large chol content (∼30 mol %) was enhanced by at least ∼70% versus chol-free bilayers. The suggested approach appears to be useful for exploring heterogeneities in lipid composition of biological membranes of different types.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , Cholesterol/chemistry , Glycerylphosphorylcholine/analogs & derivatives , Lipid Bilayers/chemistry , Spin Labels , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Electron Spin Resonance Spectroscopy , Glycerylphosphorylcholine/chemistry , Models, Molecular , Phosphatidylcholines
5.
J Chem Phys ; 141(21): 211101, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25481121

ABSTRACT

Lipid-cholesterol interactions are responsible for different properties of biological membranes including those determining formation in the membrane of spatial inhomogeneities (lipid rafts). To get new information on these interactions, electron spin echo (ESE) spectroscopy, which is a pulsed version of electron paramagnetic resonance (EPR), was applied to study 3ß-doxyl-5α-cholestane (DCh), a spin-labeled analog of cholesterol, in phospholipid bilayer consisted of equimolecular mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine. DCh concentration in the bilayer was between 0.1 mol.% and 4 mol.%. For comparison, a reference system containing a spin-labeled 5-doxyl-stearic acid (5-DSA) instead of DCh was studied as well. The effects of "instantaneous diffusion" in ESE decay and in echo-detected (ED) EPR spectra were explored for both systems. The reference system showed good agreement with the theoretical prediction for the model of spin labels of randomly distributed orientations, but the DCh system demonstrated remarkably smaller effects. The results were explained by assuming that neighboring DCh molecules are oriented in a correlative way. However, this correlation does not imply the formation of clusters of cholesterol molecules, because conventional continuous wave EPR spectra did not show the typical broadening due to aggregation of spin labels and the observed ESE decay was not faster than in the reference system. So the obtained data evidence that cholesterol molecules at low concentrations in biological membranes can interact via large distances of several nanometers which results in their orientational self-ordering.


Subject(s)
Cholesterol/analogs & derivatives , Cyclic N-Oxides/analysis , Lipid Bilayers/chemistry , Spin Labels , 1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Electron Spin Resonance Spectroscopy/methods , Glycerylphosphorylcholine/analogs & derivatives , Glycerylphosphorylcholine/chemistry , Phosphatidylcholines
SELECTION OF CITATIONS
SEARCH DETAIL
...