Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 136(22): 2574-2587, 2020 11 26.
Article in English | MEDLINE | ID: mdl-32822472

ABSTRACT

The canonical Wnt signaling pathway is mediated by interaction of ß-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of ß-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates ß-catenin-TCF/LEF interaction. Disruption of the ß-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of ß-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of ß-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the ß-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the ß-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.


Subject(s)
Granulocytes/metabolism , Myelopoiesis , Receptors, Colony-Stimulating Factor/biosynthesis , Signal Transduction , TCF Transcription Factors/metabolism , Transcription Factor 7-Like 2 Protein/metabolism , Up-Regulation , beta Catenin/metabolism , Animals , Candida albicans , Candidiasis/genetics , Candidiasis/metabolism , Mice , Mice, Transgenic , Receptors, Colony-Stimulating Factor/genetics , TCF Transcription Factors/genetics , beta Catenin/genetics
3.
Cell Death Dis ; 9(8): 814, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050105

ABSTRACT

Hematopoiesis, the formation of blood cells from hematopoietic stem cells (HSC), is a highly regulated process. Since the discovery of microRNAs (miRNAs), several studies have shown their significant role in the regulation of the hematopoietic system. Impaired expression of miRNAs leads to disrupted cellular pathways and in particular causes loss of hematopoietic ability. Here, we report a previously unrecognized function of miR-143 in granulopoiesis. Hematopoietic cells undergoing granulocytic differentiation exhibited increased miR-143 expression. Overexpression or ablation of miR-143 expression resulted in accelerated granulocytic differentiation or block of differentiation, respectively. The absence of miR-143 in mice resulted in a reduced number of mature granulocytes in blood and bone marrow. Additionally, we observed an association of high miR-143 expression levels with a higher probability of survival in two different cohorts of patients with acute myeloid leukemia (AML). Overexpression of miR-143 in AML cells impaired cell growth, partially induced differentiation, and caused apoptosis. Argonaute2-RNA-Immunoprecipitation assay revealed ERK5, a member of the MAPK-family, as a target of miR-143 in myeloid cells. Further, we observed an inverse correlation of miR-143 and ERK5 in primary AML patient samples, and in CD34+ HSPCs undergoing granulocytic differentiation and we confirmed functional relevance of ERK5 in myeloid cells. In conclusion, our data describe miR-143 as a relevant factor in granulocyte differentiation, whose expression may be useful as a prognostic and therapeutic factor in AML therapy.


Subject(s)
Leukemia, Myeloid, Acute/pathology , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , 3' Untranslated Regions , Animals , Antagomirs/metabolism , Apoptosis , Cell Differentiation , Cell Proliferation , Granulocytes/cytology , Granulocytes/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Mitogen-Activated Protein Kinase 7/chemistry , Mitogen-Activated Protein Kinase 7/genetics , Prognosis , Survival Rate
4.
J Vis Exp ; (132)2018 02 21.
Article in English | MEDLINE | ID: mdl-29553501

ABSTRACT

Understanding of the hematopoietic stem and progenitor cell biology has important implications for regenerative medicine and the treatment of hematological pathologies. Despite the most relevant data that can be acquired using in vivo models or primary cultures, the low abundance of hematopoietic stem and progenitor cells considerably restricts the pool of suitable techniques for their investigation. Therefore, the use of cell lines allows sufficient production of biological material for the performance of screenings or assays that require large cell numbers. Here we present a detailed description, readout, and interpretation of proliferation and differentiation assays which are used for the investigation of processes involved in myelopoiesis and neutrophilic differentiation. These experiments employ the 32D/G-CSF-R cytokine dependent murine myeloid cell line, which possesses the ability to proliferate in the presence of IL-3 and differentiate in G-CSF. We provide optimized protocols for handling 32D/G-CSF-R cells and discuss major pitfalls and drawbacks that might compromise the described assays and expected results. Additionally, this article contains protocols for lentiviral and retroviral production, titration, and transduction of 32D/G-CSF-R cells. We demonstrate that genetic manipulation of these cells can be employed to successfully perform functional and molecular studies, which can complement results obtained with primary hematopoietic stem and progenitor cells or in vivo models.


Subject(s)
Hematopoietic Stem Cells/metabolism , Myeloid Cells/metabolism , Animals , Cell Differentiation , Cell Proliferation , Hematopoietic Stem Cells/cytology , Mice , Myeloid Cells/cytology
6.
J Biol Chem ; 292(46): 18924-18936, 2017 11 17.
Article in English | MEDLINE | ID: mdl-28900037

ABSTRACT

The transcription factor C/EBPα is essential for myeloid differentiation and is frequently dysregulated in acute myeloid leukemia. Although studied extensively, the precise regulation of its gene by upstream factors has remained largely elusive. Here, we investigated its transcriptional activation during myeloid differentiation. We identified an evolutionarily conserved octameric sequence, CCCAGCAG, ∼100 bases upstream of the CEBPA transcription start site, and demonstrated through mutational analysis that this sequence is crucial for C/EBPα expression. This sequence is present in the genes encoding C/EBPα in humans, rodents, chickens, and frogs and is also present in the promoters of other C/EBP family members. We identified that ZNF143, the human homolog of the Xenopus transcriptional activator STAF, specifically binds to this 8-bp sequence to activate C/EBPα expression in myeloid cells through a mechanism that is distinct from that observed in liver cells and adipocytes. Altogether, our data suggest that ZNF143 plays an important role in the expression of C/EBPα in myeloid cells.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/genetics , Myeloid Cells/cytology , Promoter Regions, Genetic , Trans-Activators/metabolism , Transcriptional Activation , Base Sequence , Cell Line , Conserved Sequence , Gene Expression Regulation, Developmental , Hematopoiesis , Humans , Myeloid Cells/metabolism , Protein Binding
7.
Nat Commun ; 8(1): 46, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28663557

ABSTRACT

Transcription factor C/EBPα is a master regulator of myelopoiesis and its inactivation is associated with acute myeloid leukemia. Deregulation of C/EBPα by microRNAs during granulopoiesis or acute myeloid leukemia development has not been studied. Here we show that oncogenic miR-182 is a strong regulator of C/EBPα. Moreover, we identify a regulatory loop between C/EBPα and miR-182. While C/EBPα blocks miR-182 expression by direct promoter binding during myeloid differentiation, enforced expression of miR-182 reduces C/EBPα protein level and impairs granulopoiesis in vitro and in vivo. In addition, miR-182 expression is highly elevated particularly in acute myeloid leukemia patients with C-terminal CEBPA mutations, thereby depicting a mechanism by which C/EBPα blocks miR-182 expression. Furthermore, we present miR-182 expression as a prognostic marker in cytogenetically high-risk acute myeloid leukemia patients. Our data demonstrate the importance of a controlled balance between C/EBPα and miR-182 for the maintenance of healthy granulopoiesis.C/EBPα is a critical transcription factor involved in myelopoiesis and its inactivation is associated with acute myeloid leukemia (AML). Here the authors show a negative feedback loop between C/EBPα and miR-182 and identify this miRNA as a marker of high-risk AML.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Granulocytes , Leukemia, Myeloid, Acute/genetics , Leukopoiesis/genetics , MicroRNAs/genetics , Animals , Blotting, Western , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/genetics , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Mice , Mice, Knockout , MicroRNAs/metabolism , Prognosis , Real-Time Polymerase Chain Reaction
8.
Cell Death Differ ; 24(4): 705-716, 2017 04.
Article in English | MEDLINE | ID: mdl-28186500

ABSTRACT

Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα. We showed that the product of the gene, the transmembrane glycoprotein EVI2B (CD361), is abundantly expressed on the surface of primary hematopoietic cells, the highest levels of expression being reached in mature granulocytes. Using shRNA-mediated downregulation of EVI2B in human and murine cell lines and in primary hematopoietic stem and progenitor cells, we demonstrated impaired myeloid lineage development and altered progenitor functions in EVI2B-silenced cells. We showed that the compromised progenitor functionality in Evi2b-depleted cells can be in part explained by deregulation of cell proliferation and apoptosis. In addition, we generated an Evi2b knockout murine model and demonstrated altered properties of hematopoietic progenitors, as well as impaired G-CSF dependent myeloid colony formation in the knockout cells. Remarkably, we found that EVI2B is significantly downregulated in human acute myeloid leukemia samples characterized by defects in CEBPA. Altogether, our data demonstrate that EVI2B is a downstream target of C/EBPα, which regulates myeloid differentiation and functionality of hematopoietic progenitors.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Leukemia, Myeloid, Acute/pathology , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Animals , Apoptosis , Bone Marrow Cells/cytology , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Down-Regulation/drug effects , Estradiol/pharmacology , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocytes/cytology , Granulocytes/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/genetics , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...