Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Chem Toxicol ; : 1-12, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37501614

ABSTRACT

Fluoroquinolones (FQs) are highly potent bactericidal antibiotics with broad-spectrum activity against Gram-negative/positive bacteria. The Food and Drug Administration (FDA) anticipated the presence of a long-lasting incapacity of Fluoroquinolone Associated Toxicity (FQAT), which is not officially documented yet. This review aimed to précis the existing information on FQA long-term toxicity, such as cardiotoxicity, aortic aneurysm, tendon rupture, nephrotoxicity, hepatotoxicity, peripheral neuropathy, vagus nervous dysfunction, reactive oxygen species (ROS), phototoxicity, glucose hemostasis, and central nervous system (CNS) toxicity. We are focused on the CNS toxicity of FQs, either due to the direct action of the FQs on CNS receptors or by other drug co-administration, including nonsteroidal anti-inflammatory disease (NSAIDs) and theophylline. Due to the nature of the R7 side chain, FQs containing unsubstituted 7-piperazine and 7-pyrrolidine have the most significant effect. The gamma-aminobutyric acid-A (GABAA) receptor and CNS effects are inhibited through at least three possible mechanisms. Firstly, by the pharmacological action of the quinolone directly. Secondly, FQ-NSAIDs interact pharmacodynamically in which the interaction between the FQ and a receptor is significantly altered by the presence of another drug that interacts with the same receptor. An example may be the interaction between NSAIDs and some FQs. Thirdly, a pharmacokinetic drug-drug interaction leads to a higher concentration of quinolone or the other drug. An example may be the interaction between theophylline and benzodiazepines with some FQs.

SELECTION OF CITATIONS
SEARCH DETAIL
...