Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2401576, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838065

ABSTRACT

The value of aqueous zinc-ion rechargeable batteries is held back by the degradation of the Zn metal anode with repeated cycling. While raising the operating current density is shown to alleviate this anode degradation, such high cycling rates are not compatible with full cells, as they cause Zn-host cathodes to undergo capacity decay. A simple approach that improves anode performance while using more modest cathode-compatible current densities is required. This work reports reversible planar Zn deposition under cathode-compatible current densities can instead be achieved by applying external pressure to the cell. Employing multiscale characterization, this work illustrates how cycling under pressure results in denser and more uniform Zn deposition, analogous to that achieved under high cycling rates, even at low areal current densities of 1 to 10 mA cm-2. Microstructural mechanical measurements reveal that Zn structures plated under lower current densities are particularly susceptible to pressure-induced compression. The ability to achieve planar Zn plating at cathode-compatible current densities holds significant promise for enabling high-capacity Zn-ion battery full cells.

2.
J Synchrotron Radiat ; 29(Pt 4): 1043-1053, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35787572

ABSTRACT

Three-dimensional X-ray diffraction (3DXRD) is shown to be feasible at the I12 Joint Engineering, Environmental and Processing (JEEP) beamline of Diamond Light Source. As a demonstration, a microstructually simple low-carbon ferritic steel was studied in a highly textured and annealed state. A processing pipeline suited to this beamline was created, using software already established in the 3DXRD user community, enabling grain centre-of-mass positions, orientations and strain tensor elements to be determined. Orientations, with texture measurements independently validated from electron backscatter diffraction (EBSD) data, possessed a ∼0.1° uncertainty, comparable with other 3DXRD instruments. The spatial resolution was limited by the far-field detector pixel size; the average of the grain centre of mass position errors was determined as ±âˆ¼80 µm. An average per-grain error of ∼1 × 10-3 for the elastic strains was also measured; this could be reduced in future experiments by improving sample preparation, geometry calibration, data collection and analysis techniques. Application of 3DXRD onto I12 shows great potential, where its implementation is highly desirable due to the flexible, open architecture of the beamline. User-owned or designed sample environments can be used, thus 3DXRD could be applied to previously unexplored scientific areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...