Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neurosci Biobehav Rev ; 163: 105780, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955311

ABSTRACT

In this review, we consider the definitions and experimental approaches to emotional contagion and prosocial behaviour in mammals and explore their evolutionary conceptualisation for studying their occurrence in the evolutionarily divergent vertebrate group of ray-finned fish. We present evidence for a diverse set of fish phenotypes that meet definitional criteria for prosocial behaviour and emotional contagion and discuss conserved mechanisms that may account for some preserved social capacities in fish. Finally, we provide some considerations on how to address the question of interdependency between emotional contagion and prosocial response, highlighting the importance of recognition processes, decision-making systems, and ecological context for providing evolutionary explanations.


Subject(s)
Behavior, Animal , Biological Evolution , Emotions , Fishes , Social Behavior , Animals , Fishes/physiology , Emotions/physiology , Behavior, Animal/physiology , Humans
2.
Mol Autism ; 14(1): 23, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391856

ABSTRACT

BACKGROUND: Animal models enable targeting autism-associated genes, such as the shank3 gene, to assess their impact on behavioural phenotypes. However, this is often limited to simple behaviours relevant for social interaction. Social contagion is a complex phenotype forming the basis of human empathic behaviour and involves attention to the behaviour of others for recognizing and sharing their emotional or affective state. Thus, it is a form of social communication, which constitutes the most common developmental impairment across autism spectrum disorders (ASD). METHODS: Here we describe the development of a zebrafish model that identifies the neurocognitive mechanisms by which shank3 mutation drives deficits in social contagion. We used a CRISPR-Cas9 technique to generate mutations to the shank3a gene, a zebrafish paralogue found to present greater orthology and functional conservation relative to the human gene. Mutants were first compared to wild types during a two-phase protocol that involves the observation of two conflicting states, distress and neutral, and the later recall and discrimination of others when no longer presenting such differences. Then, the whole-brain expression of different neuroplasticity markers was compared between genotypes and their contribution to cluster-specific phenotypic variation was assessed. RESULTS: The shank3 mutation markedly reduced social contagion via deficits in attention contributing to difficulties in recognising affective states. Also, the mutation changed the expression of neuronal plasticity genes. However, only downregulated neuroligins clustered with shank3a expression under a combined synaptogenesis component that contributed specifically to variation in attention. LIMITATIONS: While zebrafish are extremely useful in identifying the role of shank3 mutations to composite social behaviour, they are unlikely to represent the full complexity of socio-cognitive and communication deficits presented by human ASD pathology. Moreover, zebrafish cannot represent the scaling up of these deficits to higher-order empathic and prosocial phenotypes seen in humans. CONCLUSIONS: We demonstrate a causal link between the zebrafish orthologue of an ASD-associated gene and the attentional control of affect recognition and consequent social contagion. This models autistic affect-communication pathology in zebrafish and reveals a genetic attention-deficit mechanism, addressing the ongoing debate for such mechanisms accounting for emotion recognition difficulties in autistic individuals.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Nerve Tissue Proteins , Zebrafish Proteins , Animals , Humans , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Brain , Genotype , Zebrafish , Zebrafish Proteins/genetics , Nerve Tissue Proteins/genetics
3.
Commun Biol ; 6(1): 633, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37308619

ABSTRACT

Group living animals use social and asocial cues to predict the presence of reward or punishment in the environment through associative learning. The degree to which social and asocial learning share the same mechanisms is still a matter of debate. We have used a classical conditioning paradigm in zebrafish, in which a social (fish image) or an asocial (circle image) conditioned stimulus (CS) have been paired with an unconditioned stimulus (US=food), and we have used the expression of the immediate early gene c-fos to map the neural circuits associated with each learning type. Our results show that the learning performance is similar to social and asocial CSs. However, the brain regions activated in each learning type are distinct and a community analysis of brain network data reveals segregated functional submodules, which seem to be associated with different cognitive functions involved in the learning tasks. These results suggest that, despite localized differences in brain activity between social and asocial learning, they share a common learning module and social learning also recruits a specific social stimulus integration module. Therefore, our results support the occurrence of a common general-purpose learning module, that is differentially modulated by localized activation in social and asocial learning.


Subject(s)
Learning , Zebrafish , Animals , Brain , Cognition , Conditioning, Classical
4.
J Neuroendocrinol ; 35(9): e13280, 2023 09.
Article in English | MEDLINE | ID: mdl-37165563

ABSTRACT

The fitness benefits of social life depend on the ability of animals to affiliate with others and form groups, on dominance hierarchies within groups that determine resource distribution, and on cognitive capacities for recognition, learning and information transfer. The evolution of these phenotypes is coupled with that of neuroendocrine mechanisms, but the causal link between the two remains underexplored. Growing evidence from our research group and others demonstrates that the tools available in zebrafish, Danio rerio, can markedly facilitate progress in this field. Here, we review this evidence and provide a synthesis of the state-of-the-art in this model system. We discuss the involvement of generalized motivation and cognitive components, neuroplasticity and functional connectivity across social decision-making brain areas, and how these are modulated chiefly by the oxytocin-vasopressin neuroendocrine system, but also by reward-pathway monoamine signaling and the effects of sex-hormones and stress physiology.


Subject(s)
Neuroendocrinology , Zebrafish , Animals , Brain , Motivation , Oxytocin
5.
Science ; 379(6638): 1232-1237, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36952426

ABSTRACT

Emotional contagion is the most ancestral form of empathy. We tested to what extent the proximate mechanisms of emotional contagion are evolutionarily conserved by assessing the role of oxytocin, known to regulate empathic behaviors in mammals, in social fear contagion in zebrafish. Using oxytocin and oxytocin receptor mutants, we show that oxytocin is both necessary and sufficient for observer zebrafish to imitate the distressed behavior of conspecific demonstrators. The brain regions associated with emotional contagion in zebrafish are homologous to those involved in the same process in rodents (e.g., striatum, lateral septum), receiving direct projections from oxytocinergic neurons located in the pre-optic area. Together, our results support an evolutionary conserved role for oxytocin as a key regulator of basic empathic behaviors across vertebrates.


Subject(s)
Behavior, Animal , Empathy , Fear , Oxytocin , Social Behavior , Zebrafish , Animals , Empathy/drug effects , Empathy/physiology , Fear/drug effects , Fear/physiology , Oxytocin/pharmacology , Oxytocin/physiology , Zebrafish/genetics , Receptors, Oxytocin/genetics , Behavior, Animal/drug effects , Behavior, Animal/physiology
6.
Genes Brain Behav ; 21(5): e12809, 2022 06.
Article in English | MEDLINE | ID: mdl-35524578

ABSTRACT

Sociality relies on motivational and cognitive components that may have evolved independently, or may have been linked by phenotypic correlations driven by a shared selective pressure for increased social competence. Furthermore, these components may be domain-specific or of general-domain across social and non-social contexts. Here, we used zebrafish to test if the motivational and cognitive components of social behavior are phenotypically linked and if they are domain specific or of general domain. The behavioral phenotyping of zebrafish in social and equivalent non-social tests shows that the motivational (preference) and cognitive (memory) components of sociality: (1) are independent from each other, hence not supporting the occurrence of a sociality syndrome; and (2) are phenotypically linked to non-social traits, forming two general behavioral modules, suggesting that sociality traits have been co-opted from general-domain motivational and cognitive traits. Moreover, the study of the association between single nucleotide polymorphisms (SNPs) and each behavioral module further supports this view, since several SNPs from a list of candidate "social" genes, are statistically associated with the motivational, but not with the cognitive, behavioral module. Together, these results support the occurrence of general-domain motivational and cognitive behavioral modules in zebrafish, which have been co-opted for the social domain.


Subject(s)
Social Behavior , Zebrafish , Animals , Phenotype , Polymorphism, Single Nucleotide , Zebrafish/genetics
7.
BMC Zool ; 7(1): 59, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-37170148

ABSTRACT

BACKGROUND: Animals use contests to attain resources and employ strategic decisions to minimise contest costs. These decisions are defined by behavioural response to resource value and competitive ability, but remain poorly understood. This is because the two factors are typically studied separately. Also, their study relies on overgeneralised assumptions that (i) strategies are fixed, (ii) modulated by the motivation or drive to fight and (iii) used to manage costs proportional to the timing of the loser's retreat. To address these problems, we adopt an integrative sequential analysis that incorporates competitive ability and resource value factors, to characterise territorial contest decisions in male Siamese fighting fish (Betta splendens). RESULTS: Individuals exhibited a chronological organisation of behaviour, engaging opponents first with frontal display, then switching to lateral display before deciding to attack, and reserved retreats for later stages. Using asymmetries in retreats as a proxy for outcome, the likelihood of winning was found to be mostly dependent on display. However, resource and contest conditions affected initiation latency, display, attack and retreat, suggesting that strategic decisions influence all behaviour. Overall, sequential behaviour varied consistently with individual aggressiveness and resource-value factors, and increasingly with information on competitive ability collected during the contest. This enabled shifts in tactics, such as disadvantaged individuals responding first with aggression and later with submission. Motivation to continue fighting, after interruption by startle, was also adjusted to information gathered during the contest and progressively with energetic state. Two clusters of correlated behaviours were identified, cost-mitigation (display and retreat) and escalation (initiation and attack), but changes in motivation were associated only with cost mitigation. CONCLUSIONS: Our findings contrast dominant assumptions that strategic decisions are fixed, controlled by motivational state and sufficiently described by outcome-dependent measures. We instead demonstrate that strategic decisions are complex, comprising functional changes in assessment, information use and motivational effects, which are not always inter-dependent.

8.
Front Zool ; 18(1): 12, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33743763

ABSTRACT

BACKGROUND: Competition is considered to rely on the value attributed to resources by animals, but the influence of extrinsic stressors on this value remains unexplored. Although natural or anthropogenic environmental stress often drives decreased competition, assumptions that this relies on resource devaluation are without formal evidence. According to theory, physiological or perceptual effects may influence contest behaviour directly, but motivational changes due to resource value are expected to manifest as behavioural adjustments only in interaction with attainment costs and resource benefits. Thus, we hypothesise that stressor-induced resource devaluations will impose greater effects when attainment costs are high, but not when resource benefits are higher. Noise may elicit such effects because it impacts the acoustic environment and imposes physiological and behavioural costs to animals. Therefore, we manipulated the acoustic environment using playbacks of artificial noise to test our hypotheses in the territorial male Siamese fighting fish, Betta splendens. RESULTS: Compared to a no-playback control, noise reduced defense motivation only when territory owners faced comparatively bigger opponents that impose greater injury costs, but not when territories also contained bubble nests that offer reproductive benefits. In turn, nest-size decreases were noted only after contests under noise treatment, but temporal nest-size changes relied on cross-contest variation in noise and comparative opponent size. Thus, the combined effects of noise are conditional on added attainment costs and offset by exceeding resource benefits. CONCLUSION: Our findings provide support for the hypothesised modulation of resource value under extrinsic stress and suggest implications for competition under increasing anthropogenic activity.

9.
Biol Lett ; 15(4): 20180841, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30991914

ABSTRACT

Contestants use displays to signal their aggressive intent and settle disputes before they escalate. For birds, this is often in the form of song, which can vary in structural complexity. The role of song complexity in signalling aggressive intent has not been fully established, and its efficacy could be influenced by background noise levels. Using playback experiments, we found that in European robins, Erithacus rubecula, song complexity signalled sender aggression and affected receiver response. However, increased noise impacted the ability of contestants to adjust response based on opponent song complexity. These findings provide new evidence regarding the use of acoustic signal complexity for assessing opponent aggression and that noise can influence contest behaviour by interrupting this process, which could impose fitness consequences.


Subject(s)
Aggression , Songbirds , Animals , Noise
10.
Biol Open ; 7(5)2018 May 16.
Article in English | MEDLINE | ID: mdl-29716945

ABSTRACT

We tested zebrafish shoals to examine whether groups exhibit collective spatial learning and whether this relates to the personality of group members. To do this we trained shoals to associate a collective spatial decision with a reward and tested whether shoals could reorient to the learned location from a new starting point. There were strong indications of collective learning and collective reorienting, most likely by memorising distal cues, but these processes were unrelated to personality differences within shoals. However, there was evidence that group decisions require agreement between differing personalities. Notably, shoals with more boldness variation were more likely to split during training trials and took longer to reach a collective decision. Thus cognitive tasks, such as learning and cue memorisation, may be exhibited collectively, but the ability to reach collective decisions is affected by the personality composition of the group. A likely outcome of the splitting of groups with very disparate personalities is the formation of groups with members more similar in their personality.

11.
Behav Processes ; 148: 41-45, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29330089

ABSTRACT

Acting collectively in a group provides risk-reducing benefits. Yet individuals differ in how they take risks, with some being more willing than others to approach dangerous or unfamiliar settings. Therefore, individuals may need to adjust their behaviour when in groups, either as a result of perceiving greater safety or to coordinate collective responses, the latter of which may rely on within-group dynamics biased by group composition. In zebrafish we explored how these aspects of grouping affect risk-taking behaviour by comparing solitary to group conditions and testing the ability of group-member solitary responses to predict collective responses. We focused on approach-latency towards a novel object and an unusual food to test this, for shoals of five fish. There was no indication that collective latencies are predicted by how each fish responded when alone in terms of the extremes, the variance or the mean of group-member latency towards the unusual food and the novel-object. However, fish were overall faster and less variable in their approach when shoaling. This indicates lower risk aversion by individuals in groups, presumably as a result of group safety. An interesting consequence of the overall low risk-aversion in shoals is that more risk-aversive fish adjust their behaviour more than less risk averse fish.


Subject(s)
Behavior, Animal/physiology , Risk-Taking , Social Behavior , Zebrafish/physiology , Animals , Environment , Time Factors
12.
Front Zool ; 13: 22, 2016.
Article in English | MEDLINE | ID: mdl-27274354

ABSTRACT

BACKGROUND: The expression of animal personality is indicated by patterns of consistency in individual behaviour. Often, the differences exhibited between individuals are consistent across situations. However, between some situations, this can be biased by variable levels of individual plasticity. The interaction between individual plasticity and animal personality can be illustrated by examining situation-sensitive personality traits such as boldness (i.e. risk-taking and exploration tendency). For the weakly electric fish Gnathonemus petersii, light condition is a major factor influencing behaviour. Adapted to navigate in low-light conditions, this species chooses to be more active in dark environments where risk from visual predators is lower. However, G. petersii also exhibit individual differences in their degree of behavioural change from light to dark. The present study, therefore, aims to examine if an increase of motivation to explore in the safety of the dark, not only affects mean levels of boldness, but also the variation between individuals, as a result of differences in individual plasticity. RESULTS: Boldness was consistent between a novel-object and a novel-environment situation in bright light. However, no consistency in boldness was noted between a bright (risky) and a dark (safe) novel environment. Furthermore, there was a negative association between boldness and the degree of change across novel environments, with shier individuals exhibiting greater behavioural plasticity. CONCLUSIONS: This study highlights that individual plasticity can vary with personality. In addition, the effect of light suggests that variation in boldness is situation specific. Finally, there appears to be a trade-off between personality and individual plasticity with shy but plastic individuals minimizing costs when perceiving risk and bold but stable individuals consistently maximizing rewards, which can be maladaptive.

13.
Biol Lett ; 9(2): 20120999, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23302867

ABSTRACT

Upon continued submersion in water, the glabrous skin on human hands and feet forms wrinkles. The formation of these wrinkles is known to be an active process, controlled by the autonomic nervous system. Such an active control suggests that these wrinkles may have an important function, but this function has not been clear. In this study, we show that submerged objects are handled more quickly with wrinkled fingers than with unwrinkled fingers, whereas wrinkles make no difference to manipulating dry objects. These findings support the hypothesis that water-induced finger wrinkles improve handling submerged objects and suggest that they may be an adaptation for handling objects in wet conditions.


Subject(s)
Fingers/physiology , Skin Physiological Phenomena , Skin , Water/physiology , Adaptation, Physiological , Adult , Female , Humans , Immersion , Male , Time and Motion Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...