Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
J Med Imaging (Bellingham) ; 11(3): 033501, 2024 May.
Article in English | MEDLINE | ID: mdl-38756437

ABSTRACT

Purpose: We aim to determine the combination of X-ray spectrum and detector scintillator thickness that maximizes the detectability of microcalcification clusters in dedicated cone-beam breast CT. Approach: A cascaded linear system analysis was implemented in the spatial frequency domain and was used to determine the detectability index using numerical observers for the imaging task of detecting a microcalcification cluster with 0.17 mm diameter calcium carbonate spheres. The analysis considered a thallium-doped cesium iodide scintillator coupled to a complementary metal-oxide semiconductor detector and an analytical filtered-back-projection reconstruction algorithm. Independent system parameters considered were the scintillator thickness, applied X-ray tube voltage, and X-ray beam filtration. The combination of these parameters that maximized the detectability index was considered optimal. Results: Prewhitening, nonprewhitening, and nonprewhitening with eye filter numerical observers indicate that the combination of 0.525 to 0.6 mm thick scintillator, 70 kV, and 0.25 to 0.4 mm added copper filtration maximized the detectability index at a mean glandular dose (MGD) of 4.5 mGy. Conclusion: Using parallel cascade systems' analysis, the combination of parameters that could maximize the detection of microcalcifications was identified. The analysis indicates that a harder beam than that used in current practice may be beneficial for the task of detecting microcalcifications at an MGD suitable for breast cancer screening.

2.
Med Phys ; 50(3): 1406-1417, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36427332

ABSTRACT

BACKGROUND: Dedicated cone-beam breast computed tomography (CBBCT) using short-scan acquisition is being actively investigated to potentially reduce the radiation dose to the breast. This would require determining the optimal x-ray source trajectory for such short-scan acquisition. PURPOSE: To quantify the projection angle-dependent normalized glandular dose coefficient ( D g N C T $Dg{N^{CT}}$ ) in CBBCT, referred to as angular D g N C T $Dg{N^{CT}}$ , so that the x-ray ray source trajectory that minimizes the radiation dose to the breast for short-scan acquisition can be determined. MATERIALS AND METHODS: A cohort of 75 CBBCT clinical datasets was segmented and used to generate three breast models - (I) patient-specific breast with heterogeneous fibroglandular tissue distribution and real breast shape, (II) patient-specific breast shape with homogeneous tissue distribution and matched fibroglandular weight fraction, and (III) homogeneous semi-ellipsoidal breast with patient-specific breast dimensions and matched fibroglandular weight fraction, which corresponds to the breast model used in current radiation dosimetry protocols. For each clinical dataset, the angular D g N C T $Dg{N^{CT}}$ was obtained at 10 discrete angles, spaced 36° apart, for full-scan, circular, x-ray source trajectory from Monte Carlo simulations. Model III is used for validating the Monte Carlo simulation results. Models II and III are used to determine if breast shape contributes to the observed trends in angular D g N C T $Dg{N^{CT}}$ . A geometry-based theory in conjunction with center-of-mass ( C O M $COM$ ) based distribution analysis is used to explain the projection angle-dependent variation in angular D g N C T $Dg{N^{CT}}$ . RESULTS: The theoretical model predicted that the angular D g N C T $Dg{N^{CT}}$ will follow a sinusoidal pattern and the amplitude of the sinusoid increases when the center-of-mass of fibroglandular tissue ( C O M f $CO{M_f}$ ) is farther from the center-of-mass of the breast ( C O M b $CO{M_b}$ ). It also predicted that the angular D g N C T $Dg{N^{CT}}$ will be minimized at x-ray source positions complementary to the C O M f $CO{M_f}$ . The C O M f $CO{M_f}$ was superior to the C O M b $CO{M_b}$ in 80% (60/75) of the breasts. From Monte Carlo simulations and for homogeneous breasts (models II and III), the deviation in breast shape from a semi-ellipsoid had minimal effect on angular D g N C T $Dg{N^{CT}}$ and showed less than 4% variation. From Monte Carlo simulations and for model I, as predicted by our theory, the angular D g N C T $Dg{N^{CT}}$ followed a sinusoidal pattern with maxima and minima at x-ray source positions superior and inferior to the breast, respectively. For model I, the projection angle-dependent variation in angular D g N C T $Dg{N^{CT}}$ was 16.4%. CONCLUSION: The heterogeneous tissue distribution affected the angular D g N C T $Dg{N^{CT}}$ more than the breast shape. For model I, the angular D g N C T $Dg{N^{CT}}$ was lowest when the x-ray source was inferior to the breast. Hence, for short-scan CBBCT acquisition with C O M b $CO{M_b}$ aligned with axis-of-rotation, an x-ray source trajectory inferior to the breast is preferable and such an acquisition spanning 205° can potentially reduce the mean glandular dose by up to 52%.


Subject(s)
Breast , Mammography , Humans , Mammography/methods , Phantoms, Imaging , Breast/diagnostic imaging , Cone-Beam Computed Tomography/methods , Radiometry/methods , Monte Carlo Method , Radiation Dosage
4.
Phys Med Biol ; 67(8)2022 04 07.
Article in English | MEDLINE | ID: mdl-35316793

ABSTRACT

Objective.A dedicated cone-beam breast computed tomography (BCT) using a high-resolution, low-noise detector operating in offset-detector geometry has been developed. This study investigates the effects of varying detector offsets and image reconstruction algorithms to determine the appropriate combination of detector offset and reconstruction algorithm.Approach.Projection datasets (300 projections in 360°) of 30 breasts containing calcified lesions that were acquired using a prototype cone-beam BCT system comprising a 40 × 30 cm flat-panel detector with 1024 × 768 detector pixels were reconstructed using Feldkamp-Davis-Kress (FDK) algorithm and served as the reference. The projection datasets were retrospectively truncated to emulate cone-beam datasets with sinograms of 768×768 and 640×768 detector pixels, corresponding to 5 cm and 7.5 cm lateral offsets, respectively. These datasets were reconstructed using the FDK algorithm with appropriate weights and an ASD-POCS-based Fast, total variation-Regularized, Iterative, Statistical reconstruction Technique (FRIST), resulting in a total of 4 offset-detector reconstructions (2 detector offsets × 2 reconstruction methods). Signal difference-to-noise ratio (SDNR), variance, and full-width at half-maximum (FWHM) of calcifications in two orthogonal directions were determined from all reconstructions. All quantitative measurements were performed on images in units of linear attenuation coefficient (1/cm).Results.The FWHM of calcifications did not differ (P > 0.262) among reconstruction algorithms and detector formats, implying comparable spatial resolution. For a chosen detector offset, the FRIST algorithm outperformed FDK in terms of variance and SDNR (P < 0.0001). For a given reconstruction method, the 5 cm offset provided better results.Significance.This study indicates the feasibility of using the compressed sensing-based, FRIST algorithm to reconstruct sinograms from offset-detectors. Among the reconstruction methods and detector offsets studied, FRIST reconstructions corresponding to a 30 cm × 30 cm with 5 cm lateral offset, achieved the best performance. A clinical prototype using such an offset geometry has been developed and installed for clinical trials.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Retrospective Studies
5.
Med Phys ; 48(3): 1079-1088, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33501686

ABSTRACT

PURPOSE: A clinical-prototype, dedicated, cone-beam breast computed tomography (CBBCT) system with offset detector is undergoing clinical evaluation at our institution. This study is to estimate the normalized glandular dose coefficients ( DgN CT ) that provide air kerma-to-mean glandular dose conversion factors using Monte Carlo simulations. MATERIALS AND METHODS: The clinical prototype CBBCT system uses 49 kV x-ray spectrum with 1.39 mm 1st half-value layer thickness. Monte Carlo simulations (GATE, version 8) were performed with semi-ellipsoidal, homogeneous breasts of various fibroglandular weight fractions ( f g = 0.01 , 0.15 , 0.5 , 1 ) , chest wall diameters ( d = 8 , 10 , 14 , 18 , 20  cm), and chest wall to nipple length ( l = 0.75 d ), aligned with the axis of rotation (AOR) located at 65 cm from the focal spot to determine the DgN CT . Three geometries were considered - 40 × 30 -cm detector with no offset that served as reference and corresponds to a clinical CBBCT system, 30 × 30 -cm detector with 5 cm offset, and a 30 × 30 -cm detector with 10 cm offset. RESULTS: For 5 cm lateral offset, the DgN CT ranged 0.177 - 0.574  mGy/mGy and reduction in DgN CT with respect to reference geometry was observed only for 18 cm ( 6.4 % ± 0.23 % ) and 20 cm ( 9.6 % ± 0.22 % ) diameter breasts. For the 10 cm lateral offset, the DgN CT ranged 0.221 - 0.581  mGy/mGy and reduction in DgN CT was observed for all breast diameters. The reduction in DgN CT was 1.4 % ± 0.48 % , 7.1 % ± 0.13 % , 17.5 % ± 0.19 % , 25.1 % ± 0.15 % , and 27.7 % ± 0.08 % for 8, 10, 14, 18, and 20 cm diameter breasts, respectively. For a given breast diameter, the reduction in DgN CT with offset-detector geometries was not dependent on f g . Numerical fits of DgN CT d , l , f g were generated for each geometry. CONCLUSION: The DgN CT and the numerical fit, D g N CT d , l , f g would be of benefit for current CBBCT systems using the reference geometry and for future generations using offset-detector geometry. There exists a potential for radiation dose reduction with offset-detector geometry, provided the same technique factors as the reference geometry are used, and the image quality is clinically acceptable.


Subject(s)
Breast Neoplasms , Breast , Mammography , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Humans , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radiometry
6.
Sci Rep ; 10(1): 21111, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273541

ABSTRACT

To develop and investigate a deep learning approach that uses sparse-view acquisition in dedicated breast computed tomography for radiation dose reduction, we propose a framework that combines 3D sparse-view cone-beam acquisition with a multi-slice residual dense network (MS-RDN) reconstruction. Projection datasets (300 views, full-scan) from 34 women were reconstructed using the FDK algorithm and served as reference. Sparse-view (100 views, full-scan) projection data were reconstructed using the FDK algorithm. The proposed MS-RDN uses the sparse-view and reference FDK reconstructions as input and label, respectively. Our MS-RDN evaluated with respect to fully sampled FDK reference yields superior performance, quantitatively and visually, compared to conventional compressed sensing methods and state-of-the-art deep learning based methods. The proposed deep learning driven framework can potentially enable low dose breast CT imaging.


Subject(s)
Algorithms , Breast/diagnostic imaging , Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Female , Humans , Linear Models
7.
Biomed Phys Eng Express ; 6(6)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33377758

ABSTRACT

The purpose of this study is to quantify the impact of sparse-view acquisition in short-scan trajectories, compared to 360-degrees full-scan acquisition, on image quality measures in dedicated cone-beam breast computed tomography (BCT). Projection data from 30 full-scan (360-degrees; 300 views) BCT exams with calcified lesions were selected from an existing clinical research database. Feldkamp-Davis-Kress (FDK) reconstruction of the full-scan data served as the reference. Projection data corresponding to two short-scan trajectories, 204 and 270-degrees, which correspond to the minimum and maximum angular range achievable in a cone-beam BCT system were selected. Projection data were retrospectively sampled to provide 225, 180, and 168 views for 270-degrees short-scan, and 170 views for 204-degrees short-scan. Short-scans with 180 and 168 views in 270-degrees used non-uniform angular sampling. A fast, iterative, total variation-regularized, statistical reconstruction technique (FIRST) was used for short-scan image reconstruction. Image quality was quantified by variance, signal-difference to noise ratio (SDNR) between adipose and fibroglandular tissues, full-width at half-maximum (FWHM) of calcifications in two orthogonal directions, as well as, bias and root-mean-squared-error (RMSE) computed with respect to the reference full-scan FDK reconstruction. The median values of bias (8.6 × 10-4-10.3 × 10-4cm-1) and RMSE (6.8 × 10-6-9.8 × 10-6cm-1) in the short-scan reconstructions, computed with the full-scan FDK as the reference were close to, but not zero (P < 0.0001, one-sample median test). The FWHM of the calcifications in the short-scan reconstructions did not differ significantly from the reference FDK reconstruction (P > 0.118), except along the superior-inferior direction for the short-scan reconstruction with 168 views in 270-degrees (P = 0.046). The variance and SDNR from short-scan reconstructions were significantly improved compared to the full-scan FDK reconstruction (P < 0.0001). This study demonstrates the feasibility of the short-scan, sparse-view, compressed sensing-based iterative reconstruction. This study indicates that shorter scan times and reduced radiation dose without sacrificing image quality are potentially feasible.

8.
Phys Med ; 73: 117-124, 2020 May.
Article in English | MEDLINE | ID: mdl-32361156

ABSTRACT

Compressed sensing based iterative reconstruction algorithms for computed tomography such as adaptive steepest descent-projection on convex sets (ASD-POCS) are attractive due to their applicability in incomplete datasets such as sparse-view data and can reduce radiation dose to the patients while preserving image quality. Although IR algorithms reduce image noise compared to analytical Feldkamp-Davis-Kress (FDK) algorithm, they may generate artifacts, particularly along the periphery of the object. One popular solution is to use finer image-grid followed by down-sampling. This approach is computationally intensive but may be compensated by reducing the field of view. Our proposed solution is to replace the algebraic reconstruction technique within the original ASD-POCS by ordered subsets-simultaneous algebraic reconstruction technique (OS-SART) and with initialization using FDK image. We refer to this method as Fast, Iterative, TV-Regularized, Statistical reconstruction Technique (FIRST). In this study, we investigate FIRST for cone-beam dedicated breast CT with large image matrix. The signal-difference to noise ratio (SDNR), the difference of the mean value and the variance of adipose and fibroglandular tissues for both FDK and FIRST reconstructions were determined. With FDK serving as the reference, the root-mean-square error (RMSE), bias, and the full-width at half-maximum (FWHM) of microcalcifications in two orthogonal directions were also computed. Our results suggest that FIRST is competitive to the finer image-grid method with shorter reconstruction time. Images reconstructed using the FIRST do not exhibit artifacts and outperformed FDK in terms of image noise. This suggests the potential of this approach for radiation dose reduction in cone-beam breast CT.


Subject(s)
Artifacts , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted/methods , Radiation Dosage , Signal-To-Noise Ratio , Time Factors
9.
J Xray Sci Technol ; 28(3): 405-426, 2020.
Article in English | MEDLINE | ID: mdl-32333575

ABSTRACT

BACKGROUND: High-resolution, low-noise detectors with minimal dead-space at chest-wall could improve posterior coverage and microcalcification visibility in the dedicated cone-beam breast CT (CBBCT). However, the smaller field-of-view necessitates laterally-shifted detector geometry to enable optimizing the air-gap for x-ray scatter rejection. OBJECTIVE: To evaluate laterally-shifted detector geometry for CBBCT with clinical projection datasets that provide for anatomical structures and lesions. METHODS: CBBCT projection datasets (n = 17 breasts) acquired with a 40×30 cm detector (1024×768-pixels, 0.388-mm pixels) were truncated along the fan-angle to emulate 20.3×30 cm, 22.2×30 cm and 24.1×30 cm detector formats and correspond to 20, 120, 220 pixels overlap in conjugate views, respectively. Feldkamp-Davis-Kress (FDK) algorithm with 3 different weighting schemes were used for reconstruction. Visual analysis for artifacts and quantitative analysis of root-mean-squared-error (RMSE), absolute difference between truncated and 40×30 cm reconstructions (Diff), and its power spectrum (PSDiff) were performed. RESULTS: Artifacts were observed for 20.3×30 cm, but not for other formats. The 24.1×30 cm provided the best quantitative results with RMSE and Diff (both in units of µ, cm-1) of 4.39×10-3±1.98×10-3 and 4.95×10-4±1.34×10-4, respectively. The PSDiff (>0.3 cycles/mm) was in the order of 10-14µ2mm3 and was spatial-frequency independent. CONCLUSIONS: Laterally-shifted detector CBBCT with at least 220 pixels overlap in conjugate views (24.1×30 cm detector format) provides quantitatively accurate and artifact-free image reconstruction.


Subject(s)
Breast/diagnostic imaging , Cone-Beam Computed Tomography/methods , Mammography/methods , Algorithms , Breast Neoplasms/diagnostic imaging , Feasibility Studies , Female , Humans , Image Interpretation, Computer-Assisted , Retrospective Studies
10.
IEEE Trans Biomed Eng ; 67(9): 2443-2452, 2020 09.
Article in English | MEDLINE | ID: mdl-31899411

ABSTRACT

OBJECTIVE: To jointly optimize collimator design and image reconstruction algorithm in X-ray Fluorescence Computed Tomography (XFCT) for imaging low concentrations of high atomic number (Z) elements in small animal models. METHODS: Single pinhole (SPH) collimator and three types of multi-pinhole (MPH) collimators were evaluated. MPH collimators with 5, 7, and 9 pinholes using lead, stainless steel and brass were considered. A digital cylindrical phantom (0.5 mm3 voxels) of 25 mm diameter and 25 mm height with a central 5 mm diameter and 12.5 mm height cylindrical insert containing gold nanoparticles (2:1 insert: background concentration) was modeled. A 125 kVp, 2 mm Sn filtered x-ray spectrum (0.5 cGy/projection) for gold K-shell XFCT was considered. System matrices were implemented using analytical point spread functions (PSF) for each pinhole collimator. Poisson noise was added to the projection data (16 equiangular views) before image reconstruction using Maximum-Likelihood Expectation-Maximization (ML-EM) algorithm. Signal-present and signal-absent images were generated for the detection task performed by a channelized Hotelling observer (CHO) with 10 Dense Difference-of-Gaussian channels. The area under the curve (AUC) in receiver operating characteristic was used as the image quality metric. RESULTS: A stainless steel focusing type MPH with 7 pinholes and 20 iterations of ML-EM provided the highest AUC. CONCLUSION: MPH collimators outperformed SPH collimators for XFCT and consistently high AUCs were observed with focusing type MPH designs with 7 pinholes. SIGNIFICANCE: The combinations of collimator design and image reconstruction parameters that maximized AUC were identified, which could improve the performance of XFCT.


Subject(s)
Algorithms , Gold , Metal Nanoparticles , Animals , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , X-Rays
11.
Radiology ; 294(2): 360-361, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31770079
12.
J Xray Sci Technol ; 27(3): 431-442, 2019.
Article in English | MEDLINE | ID: mdl-30909268

ABSTRACT

OBJECTIVE: To investigate the image quality and x-ray dose associated with a transmission computed tomography (CT) component implemented within the same platform of an experimental benchtop x-ray fluorescence CT (XFCT) system for multimodal preclinical imaging applications. METHODS: Cone-beam CT scans were performed using an experimental benchtop CT + XFCT system and a cylindrically-shaped 3D-printed polymethyl methacrylate phantom (3 cm in diameter, 7 cm in height) loaded with various concentrations (0.05-1 wt. %) of gold nanoparticles (GNPs). Two commercial CT quality assurance phantoms containing 3D line-pair (LP) targets and contrast targets were also scanned. The x-ray beams of 40 and 62 kVp, both filtered by 0.08 mm Cu and 0.4 mm Al, were used with 17 ms of exposure time per projection at three current settings (2.5, 5, and 10 mA). The ordered-subset simultaneous algebraic reconstruction and total variation-minimization methods were used to reconstruct images. Sparse projection and short scan were considered to reduce the x-ray dose. The contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were calculated. RESULTS: The lowest detectable concentration of GNPs (CNR > 5) and the highest spatial resolution (per MTF50%) were 0.10 wt. % and 9.5 LP/CM, respectively, based on the images reconstructed from 360 projections of the 40 kVp beam (or x-ray dose of 3.44 cGy). The background noise for the image resulting in the lowest GNP detection limit was 25 Hounsfield units. CONCLUSION: The transmission CT component within the current experimental benchtop CT + XFCT system produced images deemed acceptable for multimodal (CT + XFCT) imaging purposes, with less than 4 cGy of x-ray dose.


Subject(s)
Cone-Beam Computed Tomography/instrumentation , Imaging, Three-Dimensional , Limit of Detection , Multimodal Imaging , Phantoms, Imaging , Radiation Dosage , Signal-To-Noise Ratio
13.
Semin Ultrasound CT MR ; 39(1): 106-113, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29317032

ABSTRACT

Dedicated breast computed tomography (CT) is the latest in a long history of breast imaging techniques dating back to the 1960s. Breast imaging is performed both for cancer screening as well as for diagnostic evaluation of symptomatic patients. Dedicated breast CT received US Food and Drug Administration approval for diagnostic use in 2015 and is slowly gaining recognition for its value in diagnostic 3-dimensional imaging of the breast, and also for injected contrast-enhanced imaging applications. Conventional mammography has known limitations in sensitivity and specificity, especially in dense breasts. Breast tomosynthesis was US Food and Drug Administration approved in 2011 and is now widely used. Dedicated breast CT is the next technological advance, combining real 3-dimensional imaging with the ease of contrast administration. The lack of painful compression and manipulation of the breasts also makes dedicated breast CT much more acceptable for the patients.


Subject(s)
Breast Neoplasms/diagnostic imaging , Cone-Beam Computed Tomography/methods , Imaging, Three-Dimensional/methods , Mammography/methods , Breast/diagnostic imaging , Female , Humans , Sensitivity and Specificity
14.
Semin Ultrasound CT MR ; 39(1): 114-121, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29317033

ABSTRACT

Early detection of breast cancers by mammography in conjunction with adjuvant therapy has contributed to reduction in breast cancer mortality. Mammography remains the "gold-standard" for breast cancer screening but is limited by tissue superposition. Digital breast tomosynthesis and more recently, dedicated breast computed tomography have been developed to alleviate the tissue superposition problem. However, all of these modalities rely upon x-ray attenuation contrast to provide anatomical images, and there are ongoing efforts to develop and clinically translate alternative modalities. These emerging modalities could provide for new contrast mechanisms and may potentially improve lesion detection and diagnosis. In this article, several of these emerging modalities are discussed with a focus on technologies that have advanced to the stage of in vivo clinical evaluation.


Subject(s)
Breast Neoplasms/diagnostic imaging , Diagnostic Imaging/methods , Mammography/methods , Breast/diagnostic imaging , Diagnostic Imaging/trends , Female , Humans , Mammography/trends
15.
Med Phys ; 45(1): 191-201, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29159941

ABSTRACT

PURPOSE: Dedicated cone beam breast CT (CBBCT) suffers from x-ray scatter contamination. We aim to identify the source of the significant difference between the scatter distributions estimated by two recent methods proposed by our group and to investigate its effect on CBBCT image quality. METHOD: We recently proposed two novel methods of scatter correction for CBBCT, using a library based (LB) technique and a forward projection (FP) model. Despite similar enhancement on CBBCT image qualities, these two methods obtain very different scatter distributions. We hypothesize that the off-focus radiation (OFR) is the contributor and results in nontrivial signals in x-ray projections, which is ignored in the scatter estimation via the LB method. Experiments using a thin wire test tool are designed to study the effect of OFR on CBBCT spatial resolution by measuring the point spread function (PSF) and the modulation transfer function (MTF). A narrow collimator setting is used to suppress the OFR-induced signals. In addition, "PSFs" and "MTFs" are measured on clinical CBBCT images obtained by the LB and FP methods using small calcifications as point sources. The improvement of spatial resolution achieved by suppressing OFR in the wire experiment as well as in the clinical study is quantified by the improvement ratios of PSFs and spatial frequencies at different MTF values. Our hypothesis that OFR causes the imaging difference between the FP and LB methods is verified if these ratios obtained from experimental and clinical data are consistent. RESULTS: In the wire experiment, the results show that suppression of OFR increases the maximum signal of the PSF by about 14% and reduces the full-width-at-half-maximum (FWHM) by about 12.0%. Similar improvement on spatial resolution is achieved by the FP method compared with the LB method in the patient study. The improvement ratios of spatial frequencies at different MTF values without OFR match very well in both studies at a level of around 16%, with an average root-mean-square difference of 0.47%. CONCLUSION: The results of the wire experiment and the clinical study indicate that the main difference between the LB and FP methods is whether the OFR-induced signals are included after scatter correction. Our study further shows that OFR significantly affects the image spatial resolution of CBBCT, indicating that the visualization of micro-calcifications is susceptible to OFR contamination. Our finding is therefore important in further improvement of diagnostic performance of CBBCT.


Subject(s)
Breast/diagnostic imaging , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted/methods , Scattering, Radiation , Humans
16.
Med Phys ; 44(6): 2312-2320, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28295375

ABSTRACT

PURPOSE: The quality of dedicated cone-beam breast CT (CBBCT) imaging is fundamentally limited by x-ray scatter contamination due to the large irradiation volume. In this paper, we propose a scatter correction method for CBBCT using a novel forward-projection model with high correction efficacy and reliability. METHOD: We first coarsely segment the uncorrected, first-pass, reconstructed CBBCT images into binary-object maps and assign the segmented fibroglandular and adipose tissue with the correct attenuation coefficients based on the mean x-ray energy. The modified CBBCT are treated as the prior images toward scatter correction. Primary signals are first estimated via forward projection on the modified CBBCT. To avoid errors caused by inaccurate segmentation, only sparse samples of estimated primary are selected for scatter estimation. A Fourier-Transform based algorithm, herein referred to as local filtration hereafter, is developed to efficiently estimate the global scatter distribution on the detector. The scatter-corrected images are obtained by removing the estimated scatter distribution from measured projection data. RESULTS: We evaluate the method performance on six patients with different breast sizes and shapes representing the general population. The results show that the proposed method effectively reduces the image spatial non-uniformity from 8.27 to 1.91% for coronal views and from 6.50 to 3.00% for sagittal views. The contrast-to-deviation ratio is improved by an average factor of 1.41. Comparisons on the image details reveal that the proposed scatter correction successfully preserves fine structures of fibroglandular tissues that are lost in the segmentation process. CONCLUSION: We propose a highly practical and efficient scatter correction algorithm for CBBCT via a forward-projection model. The method is attractive in clinical CBBCT imaging as it is readily implementable on a clinical system without modifications in current imaging protocols or system hardware.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Humans , Phantoms, Imaging , Reproducibility of Results , Scattering, Radiation , X-Rays
17.
Phys Med Biol ; 62(5): 1969-1993, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28075335

ABSTRACT

In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50 µm Rh; 50 µm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700 µm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37-57% reduction in exposure duration and with 2-20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700 µm) and HVL matched by increasing the kV over (0,4) range, identical SDNR was achieved with 62-65% decrease in exposure duration and with 2-24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over (700, 880) µm range, identical SDNR was achieved with 23-56% reduction in exposure duration and 2-20% reduction in MGD, depending on breast thickness. These simulations indicate that increased fluence with Al filter of fixed or variable thickness substantially decreases exposure duration while providing for similar image quality with moderate reduction in MGD.


Subject(s)
Mammography/standards , Female , Humans , Mammography/instrumentation , Mammography/methods , Monte Carlo Method , Radiographic Image Enhancement/methods , Reference Values , Signal-To-Noise Ratio , X-Rays
18.
J Biomed Opt ; 21(9): 91316, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27677170

ABSTRACT

Optically derived tissue properties across a range of breast densities and the effects of breast compression on estimates of hemoglobin, oxygen metabolism, and water and lipid concentrations were obtained from a coregistered imaging system that integrates near-infrared spectral tomography (NIRST) with digital breast tomosynthesis (DBT). Image data were analyzed from 27 women who underwent four IRB approved NIRST/DBT exams that included fully and mildly compressed breast acquisitions in two projections­craniocaudal (CC) and mediolateral-oblique (MLO)­and generated four data sets per patient (full and moderate compression in CC and MLO views). Breast density was correlated with HbT (r=0.64, p=0.001), water (r=0.62, p=0.003), and lipid concentrations (r=?0.74, p<0.001), but not oxygen saturation. CC and MLO views were correlated for individual subjects and demonstrated no statistically significant differences in grouped analysis. Comparison of compressed and uncompressed imaging demonstrated a significant decrease in oxygen saturation under compression (58% versus 50%, p=0.04). Mammographic breast density categorization was correlated with measured optically derived properties.

19.
Med Phys ; 43(8): 4529, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27487870

ABSTRACT

PURPOSE: The image quality of dedicated cone beam breast CT (CBBCT) is limited by substantial scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose a library-based software approach to suppress scatter on CBBCT images with high efficiency, accuracy, and reliability. METHODS: The authors precompute a scatter library on simplified breast models with different sizes using the geant4-based Monte Carlo (MC) toolkit. The breast is approximated as a semiellipsoid with homogeneous glandular/adipose tissue mixture. For scatter correction on real clinical data, the authors estimate the breast size from a first-pass breast CT reconstruction and then select the corresponding scatter distribution from the library. The selected scatter distribution from simplified breast models is spatially translated to match the projection data from the clinical scan and is subtracted from the measured projection for effective scatter correction. The method performance was evaluated using 15 sets of patient data, with a wide range of breast sizes representing about 95% of general population. Spatial nonuniformity (SNU) and contrast to signal deviation ratio (CDR) were used as metrics for evaluation. RESULTS: Since the time-consuming MC simulation for library generation is precomputed, the authors' method efficiently corrects for scatter with minimal processing time. Furthermore, the authors find that a scatter library on a simple breast model with only one input parameter, i.e., the breast diameter, sufficiently guarantees improvements in SNU and CDR. For the 15 clinical datasets, the authors' method reduces the average SNU from 7.14% to 2.47% in coronal views and from 10.14% to 3.02% in sagittal views. On average, the CDR is improved by a factor of 1.49 in coronal views and 2.12 in sagittal views. CONCLUSIONS: The library-based scatter correction does not require increase in radiation dose or hardware modifications, and it improves over the existing methods on implementation simplicity and computational efficiency. As demonstrated through patient studies, the authors' approach is effective and stable, and is therefore clinically attractive for CBBCT imaging.


Subject(s)
Cone-Beam Computed Tomography/methods , Mammography/methods , Scattering, Radiation , X-Rays , Algorithms , Breast , Computer Simulation , Datasets as Topic , Feasibility Studies , Humans , Models, Anatomic , Monte Carlo Method , Organ Size , Retrospective Studies , Time Factors
20.
Med Phys ; 43(5): 2118, 2016 May.
Article in English | MEDLINE | ID: mdl-27147324

ABSTRACT

PURPOSE: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. METHODS: A 650 µm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 µm resulting in pixel pitch of 60 and 51.96 µm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 µGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. RESULTS: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 µm. After resampling to 54 µm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. CONCLUSIONS: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.


Subject(s)
Angiography, Digital Subtraction/methods , Cadmium Compounds , Photons , Radiometry/instrumentation , Tellurium , Therapy, Computer-Assisted/instrumentation , Alloys , Blood Vessels/diagnostic imaging , Fingers/diagnostic imaging , Humans , Linear Models , Models, Anatomic , Phantoms, Imaging , Polymethyl Methacrylate , Radiometry/methods , Stents , Therapy, Computer-Assisted/methods , Wrist/diagnostic imaging , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...