Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
J AOAC Int ; 106(6): 1574-1588, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37725340

ABSTRACT

BACKGROUND: Staphylococcus is a genus of Gram-positive bacteria, known to cause food poisoning and gastrointestinal illness in humans. Additionally, the emergence of methicillin-resistant S. aureus (MRSA) strains has caused a major health care burden worldwide. Cronobacter is a group of Gram-negative bacteria that can survive in extreme dry conditions. Cronobacter sakazakii is known to contaminate powdered infant formula and cause life-threatening infections in neonates. Vibrio is a genus of human-pathogenic Gram-negative bacteria that can cause foodborne illness by consuming undercooked or raw seafood. Vibrio parahaemolyticus can cause serious gastrointestinal disease in humans. Thus, rapid identification of Staphylococcus spp., Cronobacter spp., and Vibrio spp. is crucial for the source tracking of contaminated food, as well as to measure the transmission dynamics of these bacterial pathogens causing foodborne diseases and outbreaks. OBJECTIVE: This single-laboratory performance evaluation study used the VITEK MS system to evaluate the potential of MALDI-TOF MS technology for rapid identification of S. aureus-like, C. sakazakii-like, and V. parahaemolyticus-like isolates of public health importance. METHOD: A total of 226 isolates recovered from various food, environmental surveillance samples, and other sources were identified by bioMérieux VITEK 2 and VITEK MS systems as Staphylococcus spp., Cronobacter spp., and Vibrio spp. Five American Type Culture Collection (ATCC) reference Gram-positive and Gram-negative bacterial isolates were also tested to complete the study. In addition, for some Staphylococcus spp. isolates, whole genome sequencing (WGS) and DNA sequencing of 16S rRNA partial region were also performed for species identification. RESULTS: The VITEK MS system was able to provide species identification to all 96 isolates of Staphylococcus spp. and to all 29 isolates of Vibrio spp. examined with a high confidence value (99.9%). Similarly, species identification was observed for the majority of spots (245 of 303) for the 101 Cronobacter spp. isolates (∼82.0%) with a high confidence value (99.9%), and genus level identification was noticed for the rest of the Cronobacter spp. isolates (18.0%; 58 of the 303 spots) analyzed. Species identification data generated by VITEK 2 system were comparable to data obtained by the VITEK MS system. CONCLUSIONS: The VITEK MS system is a reliable high-throughput platform that can rapidly identify Staphylococcus, Vibrio, and Cronobacter to the genus level, as well as S. aureus, C. sakazakii, V. parahaemolyticus, and other closely related foodborne isolates and bacterial isolates from additional sources, in most cases. HIGHLIGHTS: The VITEK MS system can be used in the rapid genus and species identification of human-pathogenic Staphylococcus spp., Cronobacter spp., and Vibrio spp. isolates.


Subject(s)
Cronobacter sakazakii , Cronobacter , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Vibrio parahaemolyticus , Infant , Infant, Newborn , Humans , Cronobacter sakazakii/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcus aureus/genetics , Public Health , Vibrio parahaemolyticus/genetics , RNA, Ribosomal, 16S/genetics , Gram-Negative Bacteria
2.
Pathogens ; 12(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36986317

ABSTRACT

Monkeypox virus (MPXV), a member of the Orthopoxvirus (OPXV) genus, is a zoonotic virus, endemic to central and western Africa that can cause smallpox-like symptoms in humans with fatal outcomes in up to 15% of patients. The incidence of MPXV infections in the Democratic Republic of the Congo, where the majority of cases have occurred historically, has been estimated to have increased as much as 20-fold since the end of smallpox vaccination in 1980. Considering the risk global travel carries for future disease outbreaks, accurate epidemiological surveillance of MPXV is warranted as demonstrated by the recent Mpox outbreak, where the majority of cases were occurring in non-endemic areas. Serological differentiation between childhood vaccination and recent infection with MPXV or other OPXVs is difficult due to the high level of conservation within OPXV proteins. Here, a peptide-based serological assay was developed to specifically detect exposure to MPXV. A comparative analysis of immunogenic proteins across human OPXVs identified a large subset of proteins that could potentially be specifically recognized in response to a MPXV infection. Peptides were chosen based upon MPXV sequence specificity and predicted immunogenicity. Peptides individually and combined were screened in an ELISA against serum from well-characterized Mpox outbreaks, vaccinee sera, and smallpox sera collected prior to eradication. One peptide combination was successful with ~86% sensitivity and ~90% specificity. The performance of the assay was assessed against the OPXV IgG ELISA in the context of a serosurvey by retrospectively screening a set of serum specimens from the region in Ghana believed to have harbored the MPXV-infected rodents involved in the 2003 United States outbreak.

3.
J Clin Microbiol ; 60(5): e0234821, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35387497

ABSTRACT

Diagnostic assays that can simultaneously determine the presence of infection with multiple pathogens are key for diagnosis and surveillance. Current multiplex diagnostic assays are complex and often have limited availability. We developed a simple, multianalyte, pathogen detection assay for screening and serosurveillance using the Luminex Magpix platform that is high throughput and can be helpful in monitoring multiple diseases. The Luminex bead-based 10-plex immunoassay for the detection of HIV-1, HIV-2, Treponema pallidum, hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus 1 (HSV-1), and HSV-2 infections was accomplished by coupling beads with specific antigens to detect IgG antibodies in plasma or serum samples. Each coupled antigen was systematically optimized, and the performance was evaluated using a panel of well-characterized specimens (n = 417) that contained antibodies to HIV-1, HIV-2, T. pallidum, HBV, HCV, HSV-1, and HSV-2. The multiplex assay had a sensitivity of 92.2% (95% Clopper-Pearson confidence interval [CI], 90.2 to 94.0%) and a specificity of 98.1% (95% CI, 97.6 to 98.7%). The sensitivities and specificities for disease-specific biomarker detection ranged from 68.7 to 100% and 95.6 to 100%, respectively. The results showed that the 10-plex immunoassay had an overall agreement of 96.7% (95% CI, 96.7 to 97.3%) with reference tests and a corresponding kappa value of 0.91 (95% CI, 0.90 to 0.93). Kappa values for the individual pathogens ranged from 0.69 to 1.00. The assay is robust and allows the simultaneous detection of antibodies to multiple antigens using a small sample volume in a high-throughput format. This assay has the potential to simplify disease surveillance by providing an alternative to expensive and highly specialized individual tests.


Subject(s)
HIV Infections , HIV-1 , Hepatitis C , Herpes Simplex , Syphilis , HIV-2 , Hepacivirus , Hepatitis B virus , Hepatitis C/diagnosis , Herpes Simplex/diagnosis , Humans , Sensitivity and Specificity , Syphilis/diagnosis , Syphilis/epidemiology , Treponema pallidum
4.
Front Vet Sci ; 7: 593683, 2020.
Article in English | MEDLINE | ID: mdl-33240962

ABSTRACT

Illegal animal trade (pet, wildlife, animal products, etc.) is an example of transnational organized crime (T.O.C.) that generates a large business with huge profit margins. This criminal activity causes several negative effects on human health (zoonoses), animal health and welfare, market protection, consumer fraud and may be used as tool of agro/bio-terrorism. Illegal animal trade can facilitate the spread of zoonoses that are defined as diseases and infections that are transmitted by vertebrate animals to man. Humans are affected by more than 1,700 known pathogens: 60% of existing human infectious diseases are zoonotic and at least 75% of emerging infectious diseases of humans have an animal origin and 72% of zoonoses originate from wildlife or exotic animals. The Bio-Crime Project was developed in 2017 by Friuli Venezia Giulia Region (Italy) and Land Carinthia (Austria) together with other public institutions to combat illegal animal trade and to reduce the risk of disease transmission from animals to humans. Project partners agreed that a multi-agency approach was required to tackle the illegal animal trade that was high value, easy to undertake and transnational crime. The Bio-crime model of cross-border cooperation introduces the novel approach of replicating the cooperative framework given by the triad of Veterinary Public Health, Justice and Law Enforcements/Customs across borders using the International Police and Custom Cooperation Centres (IPCCCs) as a connection link among public entities of the neighbor countries. This model has been recognized as a best practice at European level because it can be easily replicated and scaled up without any supplementary cost for Member States.

5.
Vaccines (Basel) ; 8(3)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698399

ABSTRACT

The protection provided by smallpox vaccines when used after exposure to Orthopoxviruses is poorly understood. Postexposu re administration of 1st generation smallpox vaccines was effective during eradication. However, historical epidemiological reports and animal studies on postexposure vaccination are difficult to extrapolate to today's populations, and 2nd and 3rd generation vaccines, developed after eradication, have not been widely tested in postexposure vaccination scenarios. In addition to concerns about preparedness for a potential malevolent reintroduction of variola virus, humans are becoming increasingly exposed to naturally occurring zoonotic orthopoxviruses and, following these exposures, disease severity is worse in individuals who never received smallpox vaccination. This study investigated whether postexposure vaccination of prairie dogs with 2nd and 3rd generation smallpox vaccines was protective against monkeypox disease in four exposure scenarios. We infected animals with monkeypox virus at doses of 104 pfu (2× LD50) or 106 pfu (170× LD50) and vaccinated the animals with IMVAMUNE® or ACAM2000® either 1 or 3 days after challenge. Our results indicated that postexposure vaccination protected the animals to some degree from the 2× LD50, but not the 170× LD5 challenge. In the 2× LD50 challenge, we also observed that administration of vaccine at 1 day was more effective than administration at 3 days postexposure for IMVAMUNE®, but ACAM2000® was similarly effective at either postexposure vaccination time-point. The effects of postexposure vaccination and correlations with survival of total and neutralizing antibody responses, protein targets, take formation, weight loss, rash burden, and viral DNA are also presented.

6.
Virology ; 544: 55-63, 2020 05.
Article in English | MEDLINE | ID: mdl-32174514

ABSTRACT

Historic observations suggest that survivors of smallpox maintained lifelong immunity and protection to subsequent infection compared to vaccinated individuals. Although protective immunity by vaccination using a related virus (vaccinia virus (VACV) strains) was the key for smallpox eradication, it does not uniformly provide long term, or lifelong protective immunity (Heiner et al., 1971). To determine differences in humoral immune responses, mice were inoculated with VACV either systemically, using intranasal inoculation (IN), or locally by an intradermal (ID) route. We hypothesized that sub-lethal IN infections may mimic systemic or naturally occurring infection and lead to an immunodominance reaction, in contrast to localized ID immunization. The results demonstrated systemic immunization through an IN route led to enhanced adaptive immunity to VACV-expressed protein targets both in magnitude and in diversity when compared to an ID route using a VACV protein microarray. In addition, cytokine responses, assessed using a Luminex® mouse cytokine multiplex kit, following IN infection was greater than that stemming from ID infection. Overall, the results suggest that the route of immunization (or infection) influences antibody responses. The greater magnitude and diversity of response in systemic infection provides indirect evidence for anecdotal observations made during the smallpox era that survivors maintain lifelong protection. These findings also suggest that systemic or disseminated host immune induction may result in a superior response, that may influence the magnitude of, as well as duration of protective responses.


Subject(s)
Immunity, Humoral , Vaccinia virus/immunology , Vaccinia/immunology , Adaptive Immunity , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral , Injections, Intradermal , Mice , Mice, Inbred BALB C , Neutralization Tests , Vaccinia/virology
7.
Lancet Glob Health ; 8(1): e143-e151, 2020 01.
Article in English | MEDLINE | ID: mdl-31839129

ABSTRACT

BACKGROUND: Transportation of laboratory samples in low-income and middle-income countries is often constrained by poor road conditions, difficult geographical terrain, and insecurity. These constraints can lead to long turnaround times for laboratory diagnostic tests and hamper epidemic control or patient treatment efforts. Although uncrewed aircraft systems (UAS)-ie, drones-can mitigate some of these transportation constraints, their cost-effectiveness compared with land-based transportation systems is unclear. METHODS: We did a comparative economic study of the costs and cost-effectiveness of UAS versus motorcycles in Liberia (west Africa) for transportation of laboratory samples under simulated routine conditions and public health emergency conditions (based on the 2013-16 west African Ebola virus disease epidemic). We modelled three UAS with operational ranges of 30 km, 65 km, and 100 km (UAS30, UAS65, and UAS100) and lifespans of 1000 to 10 000 h, and compared the costs and number of samples transported with an established motorcycle transportation programme (most commonly used by the Liberian Ministry of Health and the charity Riders for Health). Data for UAS were obtained from Skyfire (a UAS consultancy), Vayu (a UAS manufacturer), and Sandia National Laboratories (a private company with UAS research experience). Motorcycle operational data were obtained from Riders for Health. In our model, we included costs for personnel, equipment, maintenance, and training, and did univariate and probabilistic sensitivity analyses for UAS lifespans, range, and accident or failures. FINDINGS: Under the routine scenario, the per sample transport costs were US$0·65 (95% CI 0·01-2·85) and $0·82 (0·56-5·05) for motorcycles and UAS65, respectively. Per-sample transport costs under the emergency scenario were $24·06 (95% CI 21·14-28·20) for motorcycles, $27·42 (95% CI 19·25-136·75) for an unadjusted UAS model with insufficient geographical coverage, and $34·09 (95% CI 26·70-127·40) for an adjusted UAS model with complementary motorcycles. Motorcycles were more cost-effective than short-range UAS (ie, UAS30). However, with increasing range and operational lifespans, UAS became increasingly more cost-effective. INTERPRETATION: Given the current level of technology, purchase prices, equipment lifespans, and operational flying ranges, UAS are not a viable option for routine transport of laboratory samples in west Africa. Field studies are required to generate evidence about UAS lifespan, failure rates, and performance under different weather conditions and payloads. FUNDING: None.


Subject(s)
Aircraft/economics , Motorcycles/economics , Specimen Handling/economics , Specimen Handling/methods , Transportation/economics , Transportation/statistics & numerical data , Africa, Western , Aircraft/statistics & numerical data , Cost-Benefit Analysis , Humans , Motorcycles/statistics & numerical data
8.
Viruses ; 9(10)2017 10 03.
Article in English | MEDLINE | ID: mdl-28972544

ABSTRACT

During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.


Subject(s)
Animals, Wild/virology , Monkeypox virus/isolation & purification , Mpox (monkeypox)/veterinary , Animals , Antibodies, Viral/blood , Democratic Republic of the Congo/epidemiology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Mammals/virology , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/transmission , Mpox (monkeypox)/virology , Monkeypox virus/genetics , Monkeypox virus/immunology , Monkeypox virus/pathogenicity , Poxviridae Infections/epidemiology , Poxviridae Infections/immunology , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Prevalence , Real-Time Polymerase Chain Reaction , Risk Factors , Sciuridae/virology , Shrews/virology
9.
PLoS Negl Trop Dis ; 11(8): e0005809, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28827792

ABSTRACT

Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.


Subject(s)
Monkeypox virus/physiology , Mpox (monkeypox)/veterinary , Sciuridae/virology , Africa, Central , Africa, Western , Animals , Antibodies, Viral/blood , DNA, Viral/blood , Humans , Sciuridae/immunology , Virus Replication , Virus Shedding
10.
J Virol Methods ; 243: 68-73, 2017 05.
Article in English | MEDLINE | ID: mdl-28131867

ABSTRACT

Virus purification in a high-containment setting provides unique challenges due to barrier precautions and operational safety approaches that are not necessary in lower biosafety level (BSL) 2 environments. The need for high risk group pathogen diagnostic assay development, anti-viral research, pathogenesis and vaccine efficacy research necessitates work in BSL-3 and BSL-4 labs with infectious agents. When this work is performed in accordance with BSL-4 practices, modifications are often required in standard protocols. Classical virus purification techniques are difficult to execute in a BSL-3 or BSL-4 laboratory because of the work practices used in these environments. Orthopoxviruses are a family of viruses that, in some cases, requires work in a high-containment laboratory and due to size do not lend themselves to simpler purification methods. Current CDC purification techniques of orthopoxviruses uses 1,1,2-trichlorotrifluoroethane, commonly known as Genetron®. Genetron® is a chlorofluorocarbon (CFC) that has been shown to be detrimental to the ozone and has been phased out and the limited amount of product makes it no longer a feasible option for poxvirus purification purposes. Here we demonstrate a new Orthopoxvirus purification method that is suitable for high-containment laboratories and produces virus that is not only comparable to previous purification methods, but improves on purity and yield.


Subject(s)
Orthopoxvirus/isolation & purification , Virology/methods , Animals , Containment of Biohazards , Humans , Laboratories , Time Factors
11.
Crit Rev Immunol ; 37(2-6): 483-498, 2017.
Article in English | MEDLINE | ID: mdl-29773031

ABSTRACT

The reports in 1993 that naked DNA encoding viral genes conferred protective immunity came as a surprise to most vaccinologists. This review analyses the expanding number of examples where plasmid DNA induces immune responses. Issues such as the type of immunity induced, mechanisms of immune protection, and how DNA vaccines compare with other approaches are emphasized. Additional issues discussed include the likely means by which DNA vaccines induce CTL, how the potency and type of immunity induced can be modified, and whether DNA vaccines represent a practical means of manipulating unwanted immune response occurring during immunoinflammatory diseases. It seems doubtful if DNA vaccines will replace currently effective vaccines, but they may prove useful for prophylactic use against some agents that at present lack an effective vaccine. DNA vaccines promise to be valuable to manipulate the immune response in situations where responses to agents are inappropriate or ineffective.


Subject(s)
Immunogenicity, Vaccine/genetics , Vaccination/methods , Vaccines, DNA/immunology , Vaccinology/trends , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , History, 20th Century , History, 21st Century , Humans , Plasmids/genetics , Plasmids/immunology , Protozoan Vaccines/genetics , Protozoan Vaccines/immunology , Vaccination/trends , Vaccines, DNA/genetics , Vaccines, DNA/history , Vaccinology/history , Viral Vaccines/genetics , Viral Vaccines/history , Viral Vaccines/immunology
12.
Afr J Lab Med ; 5(1): 433, 2016.
Article in English | MEDLINE | ID: mdl-28879115

ABSTRACT

BACKGROUND: Use of rapid diagnostic tests for HIV and syphilis has increased remarkably in the last decade. As new rapid diagnostic tests become available, there is a continuous need to assess their performance and operational characteristics prior to use in clinical settings. OBJECTIVES: In this study, we evaluated the performance of the Chembio Dual Path Platform (DPP®) HIV-Syphilis Assay to accurately diagnose HIV, syphilis, and HIV/syphilis co-infection. METHOD: In 2013, 990 serum samples from the Georgia Public Health Laboratory in Atlanta, Georgia, United States were characterised for HIV and syphilis and used to evaluate the platform. HIV reference testing combined third-generation Enzyme Immunoassay and Western Blot, whereas reference testing for syphilis was conducted by the Treponema pallidum passive particle agglutination method and the TrepSure assay. We assessed the sensitivity and specificity of the DPP assay on this panel by comparing results with the HIV and syphilis reference testing algorithms. RESULTS: For HIV, sensitivity was 99.8% and specificity was 98.4%; for syphilis, sensitivity was 98.8% and specificity was 99.4%. Of the 348 co-infected sera, 344 (98.9%) were detected accurately by the DPP assay, but 11 specimens had false-positive results (9 HIV and 2 syphilis) due to weak reactivity. CONCLUSION: In this evaluation, the Chembio DPP HIV-Syphilis Assay had high sensitivity and specificity for detecting both HIV and treponemal antibodies. Our results indicate that this assay could have a significant impact on the simultaneous screening of HIV and syphilis using a single test device for high-risk populations or pregnant women needing timely care and treatment.

13.
PLoS One ; 10(12): e0145198, 2015.
Article in English | MEDLINE | ID: mdl-26681200

ABSTRACT

Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV oncogene-transformed epithelial cells. These findings provide a novel understanding of the molecular pathogenesis of chlamydia-associated diseases, which may guide a rational prevention strategy.


Subject(s)
Chlamydia Infections/metabolism , Epithelial-Mesenchymal Transition , Animals , Cadherins/genetics , Cadherins/metabolism , Caspases/metabolism , Chlamydia Infections/pathology , Female , Fibronectins/genetics , Fibronectins/metabolism , HeLa Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Snail Family Transcription Factors , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Zinc Finger E-box-Binding Homeobox 1
14.
PLoS Negl Trop Dis ; 9(10): e0004013, 2015.
Article in English | MEDLINE | ID: mdl-26517724

ABSTRACT

Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV) and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s). In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus) shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats) and this rodent species' competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu) from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4) or West African (W-MPXV: n = 4); an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV) between 3 and 27 days post infection (p.i.) (up to 1X108 pfu/ml), with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini) can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species.


Subject(s)
Disease Reservoirs , Monkeypox virus/isolation & purification , Mpox (monkeypox)/veterinary , Rodent Diseases/pathology , Rodent Diseases/virology , Rodentia/virology , Animals , Body Temperature , Body Weight , Locomotion , Models, Theoretical , Mpox (monkeypox)/pathology , Mpox (monkeypox)/virology , Virus Shedding
15.
PLoS One ; 10(10): e0138836, 2015.
Article in English | MEDLINE | ID: mdl-26426117

ABSTRACT

Currently, a number of assays measure Orthopoxvirus neutralization with serum from individuals, vaccinated against smallpox. In addition to the traditional plaque reduction neutralization test (PRNT), newer higher throughput assays are based on neutralization of recombinant vaccinia virus, expressing reporter genes such as ß-galactosidase or green fluorescent protein. These methods could not be used to evaluate neutralization of variola virus, since genetic manipulations of this virus are prohibited by international agreements. Currently, PRNT is the assay of choice to measure neutralization of variola virus. However, PRNT assays are time consuming, labor intensive, and require considerable volume of serum sample for testing. Here, we describe the development of a high-throughput, cell-based imaging assay that can be used to measure neutralization, and characterize replication kinetics of various Orthopoxviruses, including variola, vaccinia, monkeypox, and cowpox.


Subject(s)
Neutralization Tests/methods , Orthopoxvirus/immunology , Orthopoxvirus/pathogenicity , Animals , Chlorocebus aethiops , Green Fluorescent Proteins/genetics , Humans , Immunization , Orthopoxvirus/genetics , Orthopoxvirus/growth & development , Sciuridae , Vero Cells , Viral Plaque Assay
16.
Biomed Res Int ; 2015: 965710, 2015.
Article in English | MEDLINE | ID: mdl-26380309

ABSTRACT

Monkeypox virus (MPXV) infection of the prairie dog is valuable to studying systemic orthopoxvirus disease. To further characterize differences in MPXV clade pathogenesis, groups of prairie dogs were intranasally infected (8 × 10(3) p.f.u.) with Congo Basin (CB) or West African (WA) MPXV, and 28 tissues were harvested on days 2, 4, 6, 9, 12, 17, and 24 postinfection. Samples were evaluated for the presence of virus and gross and microscopic lesions. Virus was recovered from nasal mucosa, oropharyngeal lymph nodes, and spleen earlier in CB challenged animals (day 4) than WA challenged animals (day 6). For both groups, primary viremia (indicated by viral DNA) was seen on days 6-9 through day 17. CB MPXV spread more rapidly, accumulated to greater levels, and caused greater morbidity in animals compared to WA MPXV. Histopathology and immunohistochemistry (IHC) findings, however, were similar. Two animals that succumbed to disease demonstrated abundant viral antigen in all organs tested, except for brain. Dual-IHC staining of select liver and spleen sections showed that apoptotic cells (identified by TUNEL) tended to colocalize with poxvirus antigen. Interestingly splenocytes were labelled positive for apoptosis more often than hepatocytes in both MPXV groups. These findings allow for further characterization of differences between MPXV clade pathogenesis, including identifying sites that are important during early viral replication and cellular response to viral infection.


Subject(s)
DNA, Viral/genetics , Monkeypox virus/genetics , Mpox (monkeypox)/virology , Virus Replication/genetics , Animals , DNA, Viral/blood , Disease Models, Animal , Kinetics , Liver/virology , Lymph Nodes/virology , Mpox (monkeypox)/blood , Mpox (monkeypox)/genetics , Mpox (monkeypox)/pathology , Monkeypox virus/pathogenicity , Nasal Mucosa/virology , Phylogeny , Sciuridae/blood , Sciuridae/genetics , Sciuridae/virology , Spleen/virology
17.
Vet Parasitol ; 210(1-2): 91-7, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25881801

ABSTRACT

Since 2005, black-tailed prairie dogs (Cynomys ludovicianus) have been collected for use as research animals from field sites in Kansas, Colorado, and Texas. In January of 2012, Giardia trophozoites were identified by histology, thin-section electron microscopy, and immunofluorescent staining in the lumen of the small intestine and colon of a prairie dog euthanized because of extreme weight loss. With giardiasis suspected as the cause of weight loss, a survey of Giardia duodenalis in the laboratory colony of prairie dogs was initiated. Direct immunofluorescent testing of feces revealed active shedding of Giardia cysts in 40% (n=60) of animals held in the vivarium. All tested fecal samples (n=29) from animals in another holding facility where the index case originated were PCR positive for G. duodenalis with assemblages A and B identified from sequencing triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh), and ß-giardin (bg) genes. Both assemblages are considered zoonotic, thus the parasites in prairie dogs are potential human pathogens and indicate prairie dogs as a possible wildlife reservoir or the victims of pathogen spill-over. Molecular testing for other protozoan gastrointestinal parasites revealed no Cryptosporidium infections but identified a host-adapted Enterocytozoon bieneusi genotype group.


Subject(s)
Enterocytozoon/isolation & purification , Giardia lamblia/isolation & purification , Giardiasis/veterinary , Microsporidiosis/veterinary , Sciuridae/parasitology , Animals , DNA, Protozoan/genetics , Enterocytozoon/genetics , Feces/parasitology , Fenbendazole/therapeutic use , Giardia lamblia/genetics , Giardiasis/drug therapy , Giardiasis/parasitology , Laboratory Animal Science , Microsporidiosis/parasitology , Phylogeny , Polymerase Chain Reaction , Zoonoses
18.
Viruses ; 7(4): 2168-84, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25912718

ABSTRACT

Monkeypox is a zoonotic disease caused by a virus member of the genus Orthopoxvirus and is endemic to Central and Western African countries. Previous work has identified two geographically disjuct clades of monkeypox virus based on the analysis of a few genomes coupled with epidemiological and clinical analyses; however, environmental and geographic causes of this differentiation have not been explored. Here, we expand previous phylogenetic studies by analyzing a larger set of monkeypox virus genomes originating throughout Sub-Saharan Africa to identify possible biogeographic barriers associated with genetic differentiation; and projected ecological niche models onto environmental conditions at three periods in the past to explore the potential role of climate oscillations in the evolution of the two primary clades. Analyses supported the separation of the Congo Basin and West Africa clades; the Congo Basin clade shows much shorter branches, which likely indicate a more recent diversification of isolates within this clade. The area between the Sanaga and Cross Rivers divides the two clades and the Dahomey Gap seems to have also served as a barrier within the West African clade. Contraction of areas with suitable environments for monkeypox virus during the Last Glacial Maximum, suggests that the Congo Basin clade of monkeypox virus experienced a severe bottleneck and has since expanded its geographic range.


Subject(s)
Monkeypox virus/classification , Monkeypox virus/genetics , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Phylogeography , Africa South of the Sahara/epidemiology , Animals , Cluster Analysis , DNA, Viral/chemistry , DNA, Viral/genetics , Ecosystem , Humans , Molecular Sequence Data , Monkeypox virus/isolation & purification , Sequence Analysis, DNA , Sequence Homology
19.
BMC Res Notes ; 7: 816, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25410770

ABSTRACT

BACKGROUND: Application of molecular diagnostic methods to the determination of etiology in suspected poxvirus-associated infections of bovines is important both for the diagnosis of the individual case and to form a more complete understanding of patterns of strain occurrence and spread. The objective of this study was to identify and characterize bovine-associated zoonotic poxviruses in Bangladesh which are relevant to animal and human health. FINDINGS: Investigators from the International Center Diarrhoeal Disease Research (icddr,b), the US Centers for Disease Control and Prevention (CDC), and the Bangladesh Department of Livestock Services traveled to three districts in Bangladesh-Siranjganj, Rangpur and Bhola-to collect diagnostic specimens from dairy cattle and buffalo that had symptoms consistent with poxvirus-associated infections. Bovine papular stomatitis virus (BPSV) DNA was obtained from lesion material (teat) and an oral swab collected from an adult cow and calf (respectively) from a dairy production farm in Siranjganj. Pseudocowpox virus (PCPV) DNA signatures were obtained from a scab and oral swab collected from a second dairy cow and her calf from Rangpur. CONCLUSIONS: We report the first detection of zoonotic poxviruses from Bangladesh and show phylogenetic comparisons between the Bangladesh viruses and reference strains based on analyses of the B2L and J6R loci (vaccinia orthologs). Understanding the range and diversity of different species and strains of parapoxvirus will help to spotlight unusual patterns of occurrence that could signal events of significance to the agricultural and public health sectors.


Subject(s)
Cattle Diseases/virology , Parapoxvirus/isolation & purification , Poxviridae Infections/veterinary , Zoonoses/virology , Animals , Bangladesh/epidemiology , Cattle , Cattle Diseases/epidemiology , Dairying , Geography , Humans , Phylogeny , Poxviridae Infections/epidemiology , Poxviridae Infections/virology , Zoonoses/epidemiology
20.
Virology ; 464-465: 264-273, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25108113

ABSTRACT

The eradication of smallpox and the cessation of global vaccination led to the increased prevalence of human infections in Central Africa. Serologic and protein-based diagnostic assay for MPXV detection is difficult due to cross-reactive antibodies that do not differentiate between diverse orthopoxvirus (OPXV) species. A previously characterized monoclonal antibody (mAb 69-126-3-7) against MPXV [1] was retested for cross-reactivity with various OPXVs. The 14.5 kDa band protein that reacted with mAb 69-126-3 was identified to be MPXV A29 protein (homolog of vaccinia virus Copenhagen A27). Amino acid sequence analysis of the MPXV A29 with other OPXV homologs identified four amino acid changes. Peptides corresponding to these regions were designed and evaluated for binding to mAb 69-126-3 by ELISA and BioLayer Interferometry (BLI). Further refinement and truncations mapped the specificity of this antibody to a single amino acid difference in a 30-mer peptide compared to other OPXV homologs. This particular residue is proposed to be essential for heparin binding by VACV A27 protein. Despite this substitution, MPXV A29 bound to heparin with similar affinity to that of VACV A27 protein, suggesting flexibility of this motif for heparin binding. Although binding of mAb 69-126-3-7 to MPXV A29 prevented interaction with heparin, it did not have any effect on the infectivity of MPXV. Characterization of 69-126-3-7 mAb antibody allows for the possibility of the generation of a serological based species-specific detection of OPXVs despite high proteomic homology.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Heparin/immunology , Monkeypox virus/immunology , Mpox (monkeypox)/virology , Viral Proteins/immunology , Amino Acid Sequence , Cross Reactions , Humans , Molecular Sequence Data , Mpox (monkeypox)/immunology , Monkeypox virus/chemistry , Protein Structure, Tertiary , Sequence Alignment , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...