Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 3618197, 2022.
Article in English | MEDLINE | ID: mdl-36033562

ABSTRACT

Mesothelioma is a form of cancer that is aggressive and fatal. It is a thin layer of tissue that covers the majority of the patient's internal organs. The treatments are available; however, a cure is not attainable for the majority of patients. So, a lot of research is being done on detection of mesothelioma cancer using various different approaches; but this paper focuses on optimization techniques for optimizing the biomedical images to detect the cancer. With the restricted number of samples in the medical field, a Relief-PSO head and mesothelioma neck cancer pathological image feature selection approach is proposed. The approach reduces multilevel dimensionality. To begin, the relief technique picks different feature weights depending on the relationship between features and categories. Second, the hybrid binary particle swarm optimization (HBPSO) is suggested to automatically determine the optimum feature subset for candidate feature subsets. The technique outperforms seven other feature selection algorithms in terms of morphological feature screening, dimensionality reduction, and classification performance.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Algorithms , Humans
2.
J Imaging ; 9(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36662108

ABSTRACT

BACKGROUND AND OBJECTIVES: Brain Tumor Fusion-based Segments and Classification-Non-enhancing tumor (BTFSC-Net) is a hybrid system for classifying brain tumors that combine medical image fusion, segmentation, feature extraction, and classification procedures. MATERIALS AND METHODS: to reduce noise from medical images, the hybrid probabilistic wiener filter (HPWF) is first applied as a preprocessing step. Then, to combine robust edge analysis (REA) properties in magnetic resonance imaging (MRI) and computed tomography (CT) medical images, a fusion network based on deep learning convolutional neural networks (DLCNN) is developed. Here, the brain images' slopes and borders are detected using REA. To separate the sick region from the color image, adaptive fuzzy c-means integrated k-means (HFCMIK) clustering is then implemented. To extract hybrid features from the fused image, low-level features based on the redundant discrete wavelet transform (RDWT), empirical color features, and texture characteristics based on the gray-level cooccurrence matrix (GLCM) are also used. Finally, to distinguish between benign and malignant tumors, a deep learning probabilistic neural network (DLPNN) is deployed. RESULTS: according to the findings, the suggested BTFSC-Net model performed better than more traditional preprocessing, fusion, segmentation, and classification techniques. Additionally, 99.21% segmentation accuracy and 99.46% classification accuracy were reached using the proposed BTFSC-Net model. CONCLUSIONS: earlier approaches have not performed as well as our presented method for image fusion, segmentation, feature extraction, classification operations, and brain tumor classification. These results illustrate that the designed approach performed more effectively in terms of enhanced quantitative evaluation with better accuracy as well as visual performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...