Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299955

ABSTRACT

Scanning electrochemical microscopy (SECM) is a versatile scanning probe technique that allows monitoring of a plethora of electrochemical reactions on a highly resolved local scale. SECM in combination with atomic force microscopy (AFM) is particularly well suited to acquire electrochemical data correlated to sample topography, elasticity, and adhesion, respectively. The resolution achievable in SECM depends critically on the properties of the probe acting as an electrochemical sensor, i.e., the working electrode, which is scanned over the sample. Hence, the development of SECM probes received much attention in recent years. However, for the operation and performance of SECM, the fluid cell and the three-electrode setup are also of paramount importance. These two aspects received much less attention so far. Here, we present a novel approach to the universal implementation of a three-electrode setup for SECM in practically any fluid cell. The integration of all three electrodes (working, counter, and reference) near the cantilever provides many advantages, such as the usage of conventional AFM fluid cells also for SECM or enables the measurement in liquid drops. Moreover, the other electrodes become easily exchangeable as they are combined with the cantilever substrate. Thereby, the handling is improved significantly. We demonstrated that high-resolution SECM, i.e., resolving features smaller than 250 nm in the electrochemical signal, could be achieved with the new setup and that the electrochemical performance was equivalent to the one obtained with macroscopic electrodes.


Subject(s)
Microscopy, Atomic Force , Microscopy, Atomic Force/methods , Microscopy, Electrochemical, Scanning , Electrodes
2.
Langmuir ; 37(46): 13537-13547, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34752120

ABSTRACT

The colloidal probe technique, which is based on micrometer-sized colloidal particles that are attached to the end of a cantilever, revolutionized direct force measurements by atomic force microscopy (AFM). Its major advantages are a defined interaction geometry and a high force sensitivity. Here, we present a versatile and simple approach for preparing spherical electrodes in the micrometer range on an otherwise insulated AFM cantilever. Thereby, it becomes possible to combine direct force measurements and potentiostatic control of the probe for various types of electrode materials. Two examples for the use of such electrochemical colloidal probes (eCP) are presented: First, on soft, conductive films of poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) the adhesion behavior was studied. The current through the contact area between the probe and film remained constant until the jump-out of contact, indicating a constant geometrical contact area. Second, the long-range forces due to diffuse layer overlap between an eCP and a glass surface have been determined as a function of the externally applied potential. The resulting interaction force profiles are in good agreement with those calculated based on charge regulation and solutions of the full Poisson-Boltzmann equation.

SELECTION OF CITATIONS
SEARCH DETAIL
...