Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(50): 47482-47495, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144104

ABSTRACT

Parkinson's disease (PD) is a progressive, age-related neurodegenerative disease. The disease is characterized by the loss of dopaminergic neurons in the substantia nigra, pars compacta of the midbrain. Pramipexole (PPX) is a novel drug used for the treatment of PD. It has a high affinity for the dopamine (DA) D2 receptor subfamily and acts as a targeted mitochondrial antioxidant. It is less effective in the treatment of PD due to its short half-life, highly inconvenient dosing schedule, and long-term side effects. In recent years, PPX-loaded nanoformulations have been actively reported to overcome these limitations. In the current study, we focused on increasing the effectiveness of PPX by minimizing the dosing frequency and improving the treatment strategy for PD. Herein, we report the synthesis of biodegradable polyvinylpyrrolidone (PVP)-capped copper oxide nanoparticles (PVP-CuO NPs), followed by PPX anchoring on the surface of the PVP-CuO NPs (PPX-PVP-CuO NC), in a simple and inexpensive method. The newly formulated PPX-PVP-CuO NC complex was analyzed for its chemical and physical properties. The PPX-PVP-CuO NC was tested to protect against rotenone (RT)-induced toxicity in the Drosophila PD model. The in vivo studies using the RT-induced Drosophila PD model showed significant changes in negative geotaxis behavior and the level of DA and acetylcholinesterase. In addition, oxidative stress markers such as glutathione-S-transferase, total glutathione, thiobarbituric acid reactive species, and protein carbonyl content showed significant amelioration. The positive changes of PPX-PVP-CuO NC treatment in behavior, neurotransmitter level, and antioxidant level suggest its potential role in mitigating the PD phenotype. The formulation can be used for treatment or pharmacological intervention against PD.

2.
Biol Trace Elem Res ; 201(2): 644-654, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35338449

ABSTRACT

Trace elements are essential for the human body's various physiological processes but if they are present in higher concentration, these elements turn to be toxic and cause adverse effect on physiological processes. Similarly, deficiency of these essential elements also affects physiological processes and leads to abnormal metabolic activities. There is a lot of interest in recent years to know the mystery behind the involvement of trace elements in the metabolic activities of autistic children suspecting that it may be a risk factor in the aetiology of autism. The present study aims to analyse the plasma trace elements in autistic children using the total reflection X-ray fluorescence (TXRF) technique. Plasma samples from 70 autistic children (mean age: 11.5 ± 3.1) were analysed with 70 age- and sex-matched healthy children as controls (mean age: 12 ± 2.5). TXRF analysis revealed the higher concentration of copper (1227.8 ± 17.8), chromium (7.1 ± 2.5), bromine (2695.1 ± 24) and arsenic (126.3 ± 10) and lower concentration of potassium (440.1 ± 25), iron (1039.6 ± 28), zinc (635.7 ± 21), selenium (52.3 ± 8.5), rubidium (1528.9 ± 28) and molybdenum (162,800.8 ± 14) elements in the plasma of autistic children in comparison to healthy controls. Findings of the first study from India suggest these altered concentrations in elements in autistic children over normal healthy children affect the physiological processes and metabolism. Further studies are needed to clarify the association between the altered element concentration and physiology of autism in the North Karnataka population in India.


Subject(s)
Autistic Disorder , Selenium , Trace Elements , Humans , Child , Adolescent , Trace Elements/analysis , Autistic Disorder/metabolism , X-Rays , India , Zinc , Copper
3.
Molecules ; 25(6)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178417

ABSTRACT

Sodium alginate (NaAlg) based membranes were prepared using a solution technique, crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-MA). Subsequently, the membranes were modified by the incorporation of 0, 10, 20, 30 and 40% w/w of titanium dioxide with respect to sodium alginate. The membranes thus obtained were designated as M, M-1, M-2, M-3 and M-4, respectively. An equilibrium swelling experiment was performed using different compositions of the water and isopropanol mixtures. Subsequently, we used a pervaporation cell fitted with each membrane in order to evaluate the extent of the pervaporation dehydration of isopropanol. Among the membranes studied, the membranes containing 40 mass% of titanium dioxide exhibited the highest separation factor(α) of 24,092, with a flux(J) of 18.61 × 10-2 kg/m2∙h at 30 °C for 10 mass% w/w of water in the feed. The total flux and the flux of water were found to overlap with each other, indicating that these membranes can be effectively used to break the azeotropic point of water-isopropanol mixtures. The results clearly indicate that these nanocomposite membranes exhibit an excellent performance in the dehydration of isopropanol. The activation energy values obtained for the water permeation were significantly lower than those of the isopropanol permeation, underlining that these membranes have a high separation ability for the water-isopropanol system. The estimated activation energies for total permeation (EP) and total diffusion (ED) values ranged between 10.60 kJ∙mol-1 and 3.96 kJ∙mol-1, and 10.76 kJ∙mol-1 and 4.29 kJ∙mol-1, respectively. The negative change in the enthalpy values for all the membranes indicates that sorption was mainly dominated by Langmuir's mode of sorption.


Subject(s)
Membranes, Artificial , Nanocomposites/chemistry , Thermodynamics , Titanium/chemistry , 2-Propanol/chemistry , Alginates/chemistry , Cross-Linking Reagents/chemistry , Diffusion , Ethanol/chemistry , Sulfonic Acids/chemistry , Temperature , Water/chemistry
4.
Arch Pharm (Weinheim) ; 352(10): e1900013, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31397503

ABSTRACT

Coumarin-3-yl-methyl-1,2,3-triazolyl-1,2,4-triazol-3(4H)-ones (8k-z) were synthesized via copper(I)-catalyzed azide-alkyne cycloaddition click chemistry. The synthesized hybrid molecules were characterized by spectral studies. Compounds 8k-z were screened for their in vitro anti-TB activity by using the Microplate Alamar Blue assay and for cytotoxicity using the MTT assay. Some of the compounds were found to be most potent against the tested Mycobacterium tuberculosis H37Rv strain with a MIC of 1.60 µg/ml. Further, docking the compounds into the InhA binding pocket showed strong binding interactions and effective overall docking scores were recorded. The drug-likeness and toxicity studies were computed using Molinspiration and Protox, respectively.


Subject(s)
Antitubercular Agents/chemical synthesis , Click Chemistry/methods , Coumarins/chemical synthesis , Drug Design , Mycobacterium tuberculosis/drug effects , Triazoles/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Coumarins/chemistry , Coumarins/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Triazoles/chemistry , Triazoles/pharmacology
5.
Prog Biomater ; 8(3): 155-168, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31197663

ABSTRACT

Active targeting of folic acid and passive targeting of magnetic nanoparticles to bring about co-delivery of hydrophobic chemotherapeutic agents were the focus of this work. Co-precipitation in alkaline environment was employed for synthesizing Fe3O4 nanoparticles and stabilized by oleic acid. Aqueous dispersibility of oleic acid coated nanoparticles was brought about by folic acid modified Pluronic F127 and Pluronic F127 mixture. Folic acid is used as a targeting agent which was joined to Pluronic F127 via diethylene glycol bis(3-aminopropyl) ether spacer. The nanocomposite was used to delivery hydrophobic anticancer drugs, paclitaxel, and curcumin. Successful modification at each step was confirmed by FTIR and NMR. Quantitative analysis of attached folic acid indicated a total of 84.34% amount of conjugation. Nanoparticles characterization revealed the hydrodynamic size of and nanocomposite to be 94.2 nm nanometres. Furthermore, transmission electron micrograph reveals the size of the nanoparticle to be 12.5 nm hence also shows the superparamagnetic activity. Drug encapsulation efficiency of 34.7% and 59.5% was noted for paclitaxel and curcumin, respectively. Cytotoxic property of drug-loaded nanocomposites was increased in case of folic acid functionalized nanoparticles and further increased in the presence of an external magnetic field. Cellular uptake increased in the folic acid conjugated sample. Further many folds in the presence of an external magnetic field.

6.
Prog Biomater ; 7(4): 297-306, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30565175

ABSTRACT

Human serum albumin is the most abundant protein in plasma with the ability to bind to a variety of drug molecules. Magnetic nanoparticles are being extensively used in drug delivery due to its intrinsic magnetic properties. In this work, we have synthesized human serum albumin-coated citrate-functionalized iron oxide nanoparticles by CDI coupling. Furthermore, folic acid was decorated on human serum albumin by EDC and NHS coupling to confer targetability. Two cytotoxic drugs 5-fluorouracil (5FU) and curcumin were co-delivered. Wherein, the former is an anticancer agent and latter is a drug resistance depressor of former. The nanoparticles showed good aqueous dispersibility with a zeta potential of - 49.1 mV and magnetic core size in the range of 10-15 nm, thus exhibiting good magnetic property with magnetic saturation of 33.59 emu/g. Controlled drug release behavior was noticed in both drugs with faster release profile of 5FU. Nanoparticles also showed good cytotoxicity with lower IC50 values in the presence of magnetic field. The contrasting difference was noticed in folic acid-decorated and non-decorated composites, similarly in the presence of magnetic field where cell uptake was enhanced.

7.
ACS Omega ; 3(7): 8017-8026, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30087932

ABSTRACT

Brain glioma is the most lethal type of cancer, with extremely poor prognosis and high relapse. Unfortunately, the treatment of brain glioma is often limited because of the low permeability of anticancer drugs across the blood-brain barrier (BBB). To circumvent this, magnetic mesoporous nanoparticles were synthesized and loaded with doxorubicin as an anticancer agent. These nanoparticles were fabricated with Pluronic F-127 and subsequently conjugated with transferrin (Tf) to achieve the sustained release of the drug at the targeted site. The physicochemical properties of the conjugated nanoparticles were analyzed using different techniques. The magnetic saturation of the nanoparticles determined by a vibration sample magnetometer was found to be 26.10 emu/g. The cytotoxicity study was performed using the MTT assay at 48 and 96 h against the U87 cell line. The Tf-conjugated nanoparticles (DOX-MNP-MSN-PF-127-Tf) exhibited a significant IC50 value (0.570 µg/mL) as compared to the blank nanoparticles (121.98 µg/mL). To understand the transport mechanism of drugs across the BBB, an in vitro BBB model using human brain microvascular endothelial cells was developed. Among the nanoparticles, the Tf-conjugated nanoparticles demonstrated an excellent permeability across the BBB. This effect was predominant in the presence of an external magnetic field, suggesting that magnetic particles present in the matrix facilitated the uptake of drugs in U87 cells. Finally, it is concluded that nanoparticles conjugated with Tf effectively crossed the BBB. Thus, the developed nanocarriers can be considered as potential candidates to treat brain tumor.

8.
Int Sch Res Notices ; 2014: 790702, 2014.
Article in English | MEDLINE | ID: mdl-27437448

ABSTRACT

Poly(1,3,4-oxadiazole-ether) with reactive carboxylic acid pendants was synthesized from solution polymerization via nucleophilic displacement polycondensation among 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole (BFPOx) and 4,4'-bis(4-hydroxyphenyl) valeric acid (BHPA). Without altering the polymeric segments, benzimidazole modified poly(1,3,4-oxadiazole-ether)s were prepared by varying stoichiometric ratios of 1,2-phenylenediamine. The molecular structural characterization of these polymers was achieved by, FT-IR, NMR, TGA, elemental analysis, and analytical techniques. The weight-average molecular weight of virgin polymer with carboxylic acid functionality was determined by gel permeation chromatography (GPC) and was found to be 22400 (Mw/Mn = 2.07). All the synthesized polyethers were compressed into pellets and electrical contacts were established to perform dielectric properties.

9.
Eur J Med Chem ; 62: 232-40, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23353755

ABSTRACT

A series of novel 2-(4-chlorophenyl)-5-methyl-4-(2-amine/oxy-ethyl)-2,4-dihydro-[1,2,4]triazol-3-one (5a-t) were synthesized and in vitro anticancerous action of the resulting compounds was studied against NCI-60 Human Tumor Cell Line at a single high dose (10(-5) M) concentration for primary cytotoxicity assay. Among the tested compounds (5a-e, 5g-h, 5k, 5p), the compound 5g (NSC: 761736/1) was further evaluated for five dose criteria at five different minimal concentrations against the full panel of 60 human tumor cell lines which exhibited activity against Leukemia (GI50: 1.10 µM), Non-Small Cell Lung Cancer (GI50: 1.00 µM), Renal Cancer (GI50: 1.00 µM), Colon Cancer (GI50: 1.66 µM), CNS Cancer (GI50: 1.36 µM), Melanoma (GI50: 1.82 µM), Ovarian Cancer (GI50: 1.64 µM) and Breast Cancer (GI50: 1.69 µM).


Subject(s)
Antineoplastic Agents/pharmacology , Coumarins/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
10.
J Colloid Interface Sci ; 338(1): 111-20, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19570544

ABSTRACT

Novel polymer-clay-based composite membranes were prepared by incorporating sodium montmorillonite (Na(+)-MMT) clay into quaternized chitosan. The resulting membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WXAD), and thermogravimetric analysis (TGA). The effect of membrane swelling was studied by varying the water concentration in the feed. The membranes were employed for the pervaporation dehydration of isopropanol in terms of feed composition and Na(+)-MMT clay loading. The experimental results demonstrated that membrane containing 10 mass% of Na(+)-MMT clay showed the highest separation selectivity of 14,992 with a flux of 14.23x10(-2) kg/m(2) h at 30 degrees C for 10 mass% of water in the feed. The total flux and flux of water are found to be overlapping each other particularly for clay-incorporated membranes, signifying that the composite membranes developed in the present study involving quaternized chitosan and Na(+)-MMT clay are highly selective toward water. From the temperature-dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The resulting activation energy values obtained for water permeation (E(pw)) are much lower than those of isopropanol permeation (E(pIPA)), suggesting that the developed composite membranes have higher separation efficiency for the water-isopropanol system. The estimated E(p) and E(D) values ranged between 8.97 and 11.89, and 7.56 and 9.88 kJ/mol, respectively. The positive heat of sorption (DeltaH(s)) values were obtained for all the membranes, suggesting that Henry's mode of sorption is predominant in the process.

SELECTION OF CITATIONS
SEARCH DETAIL
...