Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 44(21-22): 1645-1654, 2023 11.
Article in English | MEDLINE | ID: mdl-37380622

ABSTRACT

Recovery of noble materials from waste is essential for industries around the globe. Dielectrophoretic (DEP) filtration, an electrically switchable particle separation technique, can be applied to tackle this challenge. It is highly selective regarding particle size, material or shape. Expanding the scope of DEP towards high throughput and improving the trapping efficiency are vital to make DEP a viable robust alternative to conventional separation methods. DEP filtration works by selective immobilisation of particles in a porous medium by the action of an inhomogeneous electric field. The field inhomogeneity comes from scattering an electric field at the phase boundary between the particle suspension and the filter surface. In this article, we show how the filter structure affects the DEP separation. We study fixed bed filters of three different grain types and find that the morphology of the grains highly influences the DEP filter efficiency. Specifically, grains with irregular surface structure and high perceived angularity show high separation efficiency. We believe these insights into the design of DEP filtration will pave the way towards its application in, for example, the recovery of valuable materials from electronic waste dust.


Subject(s)
Electricity , Filtration , Electrophoresis/methods , Particle Size , Porosity
2.
ACS Appl Bio Mater ; 5(2): 492-503, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35129945

ABSTRACT

Gold (Au) is an inert metal in a bulk state; however, it can be used for the preparation of Au nanoparticles (i.e., AuNPs) for multidimensional applications in the field of nanomedicine and nanobiotechnology. Herein, monodisperse concave cube AuNPs (CCAuNPs) were synthesized and functionalized with a natural antioxidant lipoic acid (LA) and a tripeptide glutathione (GSH) because different crystal facets of AuNPs provide binding sites for distinct ligands. There was an ∼10 nm bathochromic shift of the UV-vis spectrum when CCAuNPs were functionalized with LA, and the size of the as-synthesized monodisperse CCAu nanoparticles was 76 nm. The LA-functionalized CCAu nanoparticles (i.e., CCAuLA) showed the highest antibacterial activity against Bacillus subtilis. Both fluorescence images and scanning electron microscopy images confirm the damage of the bacterial cell wall as the mode of antibacterial activity of CCAuNPs. CCAuNPs also cause the oxidation of bacterial cell membrane fatty acids to produce reactive oxygen species, which pave the way for the death of bacteria. Both CCAu nanoparticles and their functionalized derivatives showed excellent hemocompatibility (i.e., percentage of hemolysis is <5% at 80 µg of AuNPs) to human red blood cells and very high biocompatibility to HeLa, L929, and Chinese hamster ovary-green fluorescent protein (CHO-GFP) cells. Taken together, LA and GSH enhance the antibacterial activity and biocompatibility, respectively, of CCAu nanoparticles that interact with the bacteria through Coulomb as well as hydrophobic interactions before demonstrating antibacterial propensity.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Thioctic Acid , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacillus subtilis , CHO Cells , Cricetinae , Cricetulus , Gold/pharmacology , Humans , Metal Nanoparticles/therapeutic use , Thioctic Acid/pharmacology
3.
Anal Bioanal Chem ; 413(5): 1279-1291, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33399880

ABSTRACT

Renal complications are long-term effect of diabetes mellitus where glucose is excreted in urine. Therefore, reliable glucose detection in urine is critical. While commercial urine strips offer a simple way to detect urine sugar, poor sensitivity and low reliability limit their use. A hybrid glucose oxidase (GOx)/horseradish peroxidase (HRP) assay remains the gold standard for pathological detection of glucose. A key restriction is poor stability of HRP and its suicidal inactivation by hydrogen peroxide, a key intermediate of the GOx-driven reaction. An alternative is to replace HRP with a robust inorganic enzyme-mimic or NanoZyme. While colloidal NanoZymes show promise in glucose sensing, they detect low concentrations of glucose, while urine has high (mM) glucose concentration. In this study, a free-standing copper NanoZyme is used for the colorimetric detection of glucose in human urine. The sensor could operate in a biologically relevant dynamic linear range of 0.5-15 mM, while showing minimal sample matrix effect such that glucose could be detected in urine without significant sample processing or dilution. This ability could be attributed to the Cu NanoZyme that for the first time showed an ability to promote the oxidation of a TMB substrate to its double oxidation diimine product rather than the charge-transfer complex product commonly observed. Additionally, the sensor could operate at a single pH without the need to use different pH conditions as used during the gold standard assay. These outcomes outline the high robustness of the NanoZyme sensing system for direct detection of glucose in human urine. Graphical abstract.


Subject(s)
Copper/chemistry , Glucose/analysis , Glycosuria/urine , Metal Nanoparticles/chemistry , Biomimetic Materials/chemistry , Catalysis , Colloids/chemistry , Colorimetry/methods , Humans , Limit of Detection , Metal Nanoparticles/ultrastructure , Oxidation-Reduction
4.
Adv Mater ; 29(27)2017 Jul.
Article in English | MEDLINE | ID: mdl-28497880

ABSTRACT

Few-layer black phosphorous (BP) has emerged as a promising candidate for next-generation nanophotonic and nanoelectronic devices. However, rapid ambient degradation of mechanically exfoliated BP poses challenges in its practical deployment in scalable devices. To date, the strategies employed to protect BP have relied upon preventing its exposure to atmospheric conditions. Here, an approach that allows this sensitive material to remain stable without requiring its isolation from the ambient environment is reported. The method draws inspiration from the unique ability of biological systems to avoid photo-oxidative damage caused by reactive oxygen species. Since BP undergoes similar photo-oxidative degradation, imidazolium-based ionic liquids are employed as quenchers of these damaging species on the BP surface. This chemical sequestration strategy allows BP to remain stable for over 13 weeks, while retaining its key electronic characteristics. This study opens opportunities to practically implement BP and other environmentally sensitive 2D materials for electronic applications.

5.
Biosens Bioelectron ; 61: 147-51, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-24874658

ABSTRACT

A novel amperometric biosensor for catechol was developed using the layer-by-layer (LbL) self-assembly of positively charged hexadecyltrimethylammonium stabilized gold nanocubes (AuNCs), negatively charged poly(sodium 4-styrenesulfonate) and tyrosinase on a screen printed carbon electrode (SPCE). A carboxylic acid terminated alkanethiol assembled on electrochemically deposited Au nanoparticles on a SPCE was used as a platform for LbL assembly. Each SPCE sensor surface was terminated with tyrosinase and the electrocatalytic response due to the tyrosinase reaction with catechol was measured using cyclic voltammetry and square wave voltammetry (SWV). The effect of introducing AuNCs into the LbL assembly to further enhance the catechol detection performance was then investigated by comparing the SWV results to those from biosensors created using both the tyrosinase modified LbL assembly in the absence of NCs and the covalent attachment of tyrosinase. A wide dynamic range from 10nM to 80 µM of catechol with an excellent sensitivity of 13.72 A/M and a detection limit of 0.4 nM were both achieved alongside a good selectivity and reproducibility for the AuNC-modified electrodes. As a demonstration, the optimized biosensor design was applied to determine catechol concentrations in tea samples.


Subject(s)
Agaricales/enzymology , Biosensing Techniques/instrumentation , Catechols/analysis , Enzymes, Immobilized/chemistry , Gold/chemistry , Monophenol Monooxygenase/chemistry , Nanostructures/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Electrolytes/chemistry , Equipment Design , Limit of Detection , Nanostructures/ultrastructure , Reproducibility of Results , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...