Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinform Adv ; 3(1): vbad070, 2023.
Article in English | MEDLINE | ID: mdl-37351310

ABSTRACT

Motivation: Accurate modeling of protein-protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations. Results: Here, we present PIQLE, a deep graph learning method for protein-protein interface quality estimation. PIQLE leverages multimeric interaction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of individual interactions between the interfacial residues using a multi-head graph attention network and then probabilistically combines the estimated quality for scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods including DProQA, TRScore, GNN-DOVE and DOVE on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study and comparison with the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring reveal that the performance gains are connected to the effectiveness of the multi-head graph attention network in leveraging multimeric interaction geometries and evolutionary information along with other sequence- and structure-derived features adopted in PIQLE. Availability and implementation: An open-source software implementation of PIQLE is freely available at https://github.com/Bhattacharya-Lab/PIQLE. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

2.
J Mol Biol ; 435(14): 168057, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37356909

ABSTRACT

The remarkable recent advances in protein structure prediction have enabled computational modeling of protein structures with considerably higher accuracy than ever before. While state-of-the-art structure prediction methods provide self-assessment confidence scores of their own predictions, an independent and open-access system for protein scoring is still needed that can be applied to a broad range of predictive modeling scenarios. Here, we present iQDeep, an integrated and highly customizable web server for protein scoring, freely available at http://fusion.cs.vt.edu/iQDeep. The underlying method of iQDeep employs multiscale deep residual neural networks (ResNets) to perform residue-level error classifications, and then probabilistically combines the error classifications for protein scoring. By adjusting the error resolutions, our method can reliably estimate the standard- or high-accuracy variants of the Global Distance Test metric for versatile protein scoring. The performance of the method has been extensively tested and compared against the state-of-the-art approaches in multiple rounds of Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiments including benchmark assessment in CASP12 and CASP13 as well as blind evaluation in CASP14. The iQDeep web server offers a number of convenient features, including (i) the choice of individual and batch processing modes; (ii) an interactive and privacy-preserving web interface for automated job submission, tracking, and results retrieval; (iii) web-based quantitative and visual analyses of the results including overall estimated score and its residue-wise breakdown along with agreements between various sequence- and structural-level features; (iv) extensive help information on job submission and results interpretation via web-based tutorial and help tooltips.


Subject(s)
Deep Learning , Protein Conformation , Software , Computational Biology/methods , Proteins/chemistry , Sequence Analysis, Protein/methods
3.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824789

ABSTRACT

Accurate modeling of protein-protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations. Here we present PIQLE, a deep graph learning method for protein-protein interface quality estimation. PIQLE leverages multimeric interaction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of the individual interactions between the interfacial residues using a multihead graph attention network and then probabilistically combines the estimated quality of the interfacial residues for scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study reveals that the performance gains are connected to the effectiveness of the multihead graph attention network in leveraging multimeric interaction geometries and evolutionary information along with other sequence- and structure-derived features adopted in PIQLE. An open-source software implementation of PIQLE, licensed under the GNU General Public License v3, is freely available at https://github.com/Bhattacharya-Lab/PIQLE .

SELECTION OF CITATIONS
SEARCH DETAIL
...