Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 62(19): 2841-2853, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37695675

ABSTRACT

In addition to amide hydrogen bonds and the hydrophobic effect, interactions involving π-bonded sp2 atoms of amides, aromatics, and other groups occur in protein self-assembly processes including folding, oligomerization, and condensate formation. These interactions also occur in aqueous solutions of amide and aromatic compounds, where they can be quantified. Previous analysis of thermodynamic coefficients quantifying net-favorable interactions of amide compounds with other amides and aromatics revealed that interactions of amide sp2O with amide sp2N unified atoms (presumably C═O···H-N hydrogen bonds) and amide/aromatic sp2C (lone pair π, n-π*) are particularly favorable. Sp3C-sp3C (hydrophobic), sp3C-sp2C (hydrophobic, CH-π), sp2C-sp2C (hydrophobic, π-π), and sp3C-sp2N interactions are favorable, sp2C-sp2N interactions are neutral, while sp2O-sp2O and sp2N-sp2N self-interactions and sp2O-sp3C interactions are unfavorable. Here, from determinations of favorable effects of 14 amides on naphthalene solubility at 10, 25, and 45 °C, we dissect amide-aromatic interaction free energies into enthalpic and entropic contributions and find these vary systematically with amide composition. Analysis of these results yields enthalpic and entropic contributions to intrinsic strengths of interactions of amide sp2O, sp2N, sp2C, and sp3C unified atoms with aromatic sp2C atoms. For each interaction, enthalpic and entropic contributions have the same sign and are much larger in magnitude than the interaction free energy itself. The amide sp2O-aromatic sp2C interaction is enthalpy-driven and entropically unfavorable, consistent with direct chemical interaction (e.g., lone pair-π), while amide sp3C- and sp2C-aromatic sp2C interactions are entropy-driven and enthalpically unfavorable, consistent with hydrophobic effects. These findings are relevant for interactions involving π-bonded sp2 atoms in protein processes.


Subject(s)
Amides , Water , Amides/chemistry , Entropy , Water/chemistry , Thermodynamics , Proteins/chemistry , Naphthalenes/chemistry
2.
bioRxiv ; 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37503153

ABSTRACT

In addition to amide hydrogen bonds and the hydrophobic effect, interactions involving π-bonded sp 2 atoms of amides, aromatics and other groups occur in protein self-assembly processes including folding, oligomerization and condensate formation. These interactions also occur in aqueous solutions of amide and aromatic compounds, where they can be quantified. Previous analysis of thermodynamic coefficients quantifying net-favorable interactions of amide compounds with other amides and aromatics revealed that interactions of amide sp 2 O with amide sp 2 N unified atoms (presumably C=O···H-N hydrogen bonds) and amide/aromatic sp 2 C (lone pair-π, n-π * ) are particularly favorable. Sp 3 C-sp 3 C (hydrophobic), sp 3 C-sp 2 C (hydrophobic, CH-π), sp 2 C-sp 2 C (hydrophobic, π-π) and sp 3 C-sp 2 N interactions are favorable, sp 2 C-sp 2 N interactions are neutral, while sp 2 O-sp 2 O and sp 2 N-sp 2 N self-interactions and sp 2 O-sp 3 C interactions are unfavorable. Here, from determinations of favorable effects of fourteen amides on naphthalene solubility at 10, 25 and 45 °C, we dissect amide-aromatic interaction free energies into enthalpic and entropic contributions and find these vary systematically with amide composition. Analysis of these results yields enthalpic and entropic contributions to intrinsic strengths of interactions of amide sp 2 O, sp 2 N, sp 2 C and sp 3 C unified atoms with aromatic sp 2 C atoms. For each interaction, enthalpic and entropic contributions have the same sign and are much larger in magnitude than the interaction free energy itself. The amide sp 2 O-aromatic sp 2 C interaction is enthalpy-driven and entropically unfavorable, consistent with direct chemical interaction (e.g. lone pair-π) while amide sp 3 C- and sp 2 C-aromatic sp 2 C interactions are entropy-driven and enthalpically unfavorable, consistent with hydrophobic effects. These findings are relevant for interactions involving π-bonded sp 2 atoms in protein processes.

3.
Biochemistry ; 57(15): 2227-2237, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29533642

ABSTRACT

Alkylureas display hydrocarbon and amide groups, the primary functional groups of proteins. To obtain the thermodynamic information that is needed to analyze interactions of amides and proteins with nucleobases and nucleic acids, we quantify preferential interactions of alkylureas with nucleobases differing in the amount and composition of water-accessible surface area (ASA) by solubility assays. Using an established additive ASA-based analysis, we interpret these thermodynamic results to determine interactions of each alkylurea with five types of nucleobase unified atoms (carbonyl sp2O, amino sp3N, ring sp2N, methyl sp3C, and ring sp2C). All alkylureas interact favorably with nucleobase sp2C and sp3C atoms; these interactions become more favorable with an increasing level of alkylation of urea. Interactions with nucleobase sp2O are most favorable for urea, less favorable for methylurea and ethylurea, and unfavorable for dialkylated ureas. Contributions to overall alkylurea-nucleobase interactions from interactions with each nucleobase atom type are proportional to the ASA of that atom type with proportionality constant (interaction strength) α, as observed previously for urea. Trends in α-values for interactions of alkylureas with nucleobase atom types parallel those for corresponding amide compound atom types, offset because nucleobase α-values are more favorable. Comparisons between ethylated and methylated ureas show interactions of amide compound sp3C with nucleobase sp2C, sp3C, sp2N, and sp3N atoms are favorable while amide sp3C-nucleobase sp2O interactions are unfavorable. Strongly favorable interactions of urea with nucleobase sp2O but weakly favorable interactions with nucleobase sp3N indicate that amide sp2N-nucleobase sp2O and nucleobase sp3N-amide sp2O hydrogen bonding (NH···O═C) interactions are favorable while amide sp2N-nucleobase sp3N interactions are unfavorable. These favorable amide-nucleobase hydrogen bonding interactions are prevalent in specific protein-nucleotide complexes.


Subject(s)
Asparagine/chemistry , Glutamine/chemistry , Methylurea Compounds/chemistry , Peptides/chemistry , Urea/analogs & derivatives , Water/chemistry , Thermodynamics , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...