Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 524(2): 323-42, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26131686

ABSTRACT

Somatostatin (SST) or agonists of the SST-2 receptor (sst2 ) in the rostral ventrolateral medulla (RVLM) lower sympathetic nerve activity, arterial pressure, and heart rate, or when administered within the Bötzinger region, evoke apneusis. Our aims were to describe the mechanisms responsible for the sympathoinhibitory effects of SST on bulbospinal neurons and to identify likely sources of RVLM SST release. Patch clamp recordings were made from bulbospinal RVLM neurons (n = 31) in brainstem slices prepared from juvenile rat pups. Overall, 58% of neurons responded to SST, displaying an increase in conductance that reversed at -93 mV, indicative of an inwardly rectifying potassium channel (GIRK) mechanism. Blockade of sst2 abolished this effect, but application of tetrodotoxin did not, indicating that the SST effect is independent of presynaptic activity. Fourteen bulbospinal RVLM neurons were recovered for immunohistochemistry; nine were SST-insensitive and did not express sst2a . Three out of five responsive neurons were sst2a -immunoreactive. Neurons that contained preprosomatostatin mRNA and cholera-toxin-B retrogradely transported from the RVLM were detected in: paratrigeminal nucleus, lateral parabrachial nucleus, Kölliker-Fuse nucleus, ventrolateral periaqueductal gray area, central nucleus of the amygdala, sublenticular extended amygdala, interstitial nucleus of the posterior limb of the anterior commissure nucleus, and bed nucleus of the stria terminalis. Thus, those brain regions are putative sources of endogenous SST release that, when activated, may evoke sympathoinhibitory effects via interactions with subsets of sympathetic premotor neurons that express sst2 .


Subject(s)
Medulla Oblongata/cytology , Neurons/metabolism , Somatostatin/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Animals, Newborn , Cholera Toxin/metabolism , HEK293 Cells , Hormones/pharmacology , Humans , Lysine/analogs & derivatives , Lysine/metabolism , Medulla Oblongata/growth & development , Microinjections , Neurons/drug effects , Neurons/physiology , Patch-Clamp Techniques , Periaqueductal Gray/cytology , Rats , Rats, Sprague-Dawley , Receptors, Neurokinin-1/metabolism , Receptors, Somatostatin/metabolism , Somatostatin/pharmacology , Tyrosine 3-Monooxygenase/metabolism
2.
Br J Pharmacol ; 171(11): 2803-13, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24460753

ABSTRACT

BACKGROUND AND PURPOSE: Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. EXPERIMENTAL APPROACH: Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. KEY RESULTS: Menthol (150-750 µM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 µM), bicuculline (30 µM) and Zn(2+) (100 µM), but unaffected by gabazine (10 µM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 µM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 µM). CONCLUSIONS AND IMPLICATIONS: These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA -mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA -related pharmacotherapies.


Subject(s)
Menthol/pharmacology , Neurons/drug effects , Periaqueductal Gray/drug effects , Receptors, GABA-A/physiology , Animals , Excitatory Postsynaptic Potentials/drug effects , Female , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Male , Neurons/physiology , Periaqueductal Gray/physiology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...