Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 231(Pt 2): 116177, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37201707

ABSTRACT

In this work, a new dendrimer modified magnetic graphene oxide (GO) was used as a substrate for electrodeposition of Au nanoparticles. The modified magnetic electrode was employed for sensitive measuring of As(III) ion as a well-established human carcinogen. The prepared electrochemical device exhibits excellent activity towards As(III) detection using the square wave anodic stripping voltammetry (SWASV) protocol. At optimum conditions (deposition potential at -0.5 V for 100 s in 0.1 M acetate buffer with pH 5.0), a linear range from 1.0 to 125.0 µgL-1 with a low detection limit (calculated by S/N = 3) of 0.47 µg L-1 was obtained. In addition to the simplicity and sensitivity of the proposed sensor, its high selectivity against some major interfering agents, such as Cu(II) and Hg(II) makes it an appreciable sensing tool for the screening of As(III). In addition, the sensor revealed satisfactory results for detection of As(III) in different water samples, and the accuracy of obtained data were confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) setup. Accounting for the high sensitivity, remarkable selectivity and good reproducibility, the established electrochemical strategy has great potential for analysis of As(III) in environmental matrices.


Subject(s)
Gold , Metal Nanoparticles , Humans , Gold/chemistry , Reproducibility of Results , Metal Nanoparticles/chemistry , Magnetic Phenomena
2.
Mikrochim Acta ; 187(4): 213, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32157452

ABSTRACT

The stainless steel mesh, in the form of the disk, was coated with graphene oxide and poly(dimethylsiloxane) (GO-PDMS) by sol-gel technique. The coated stainless steel meshes are loaded in the mini-column as solid-phase extraction cartridge for the fast isolation and preconcentration of polycyclic aromatic hydrocarbons (PAHs) from real water samples. The extracted PAHs (naphthalene, acenaphthene, acenaphthylene, anthracene, benz[a]anthracene, fluorene, and pyrene) were quantified by gas chromatography-mass spectrometry. The operation parameters affecting the extraction efficiency including sample volume, desorption conditions, and ionic strength were investigated. At optimized conditions, the linearity of this method is obtained from 0.001 to 20 ng mL-1 with 0.2 to 1.0 pg mL-1 limit of detection. For 5 replicates at 3 spiking levels (0.1, 1, and 10 ng mL-1), the relative standard deviations between 4.0 and 6.3% were achieved. The absolute extraction recovery varied from 89.1 to 94.7%. The enrichment factors were in the range of 2227-2367. The method has been employed in the determination of PAHs in the real water samples including well water, tap water, river water, and wastewater. Relative recoveries are between 95.2 and 100.9%. Graphical abstractSchematic representation of the SPE procedure using the self-assembly SPE cartridge.

SELECTION OF CITATIONS
SEARCH DETAIL
...