Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 115(17): 175004, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26551121

ABSTRACT

To explain many natural magnetized plasma phenomena, it is crucial to understand how rates of collisionless magnetic reconnection scale in large magnetohydrodynamic (MHD) scale systems. Simulations of isolated current sheets conclude such rates are independent of system size and can be reproduced by the Hall-MHD model, but neglect sheet formation and coupling to MHD scales. Here, it is shown for the problem of flux-rope merging, which includes this formation and coupling, that the Hall-MHD model fails to reproduce the kinetic results. The minimum sufficient model must retain ion kinetic effects, which set the ion diffusion region geometry and give time-averaged rates that reduce significantly with system size, leading to different global evolution in large systems.

2.
Phys Rev Lett ; 114(17): 175002, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25978241

ABSTRACT

High resolution, fully kinetic, three dimensional (3D) simulation of collisionless plasma turbulence shows the development of turbulence characterized by sheetlike current density structures spanning a range of scales. The nonlinear evolution is initialized with a long wavelength isotropic spectrum of fluctuations having polarizations transverse to an imposed mean magnetic field. We present evidence that these current sheet structures are sites for heating and dissipation, and that stronger currents signify higher dissipation rates. The analyses focus on quantities such as J·E, electron, and proton temperatures, and conditional averages of these quantities based on local electric current density. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform. Comparison with previous results from 2D kinetic simulations, as well as high frequency solar wind observational data, are discussed.

3.
Phys Rev Lett ; 110(26): 265004, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23848886

ABSTRACT

Three-dimensional kinetic simulations of magnetic reconnection reveal that the electron diffusion region is composed of two or more current sheets in regimes with weak magnetic shear angles ϕ≲80°. This new morphology is explained by oblique tearing modes which produce flux ropes while simultaneously driving enhanced current at multiple resonance surfaces. This physics persists into the nonlinear regime leading to multiple electron layers embedded within a larger Alfvénic inflow and outflow. Surprisingly, the thickness of these layers and the reconnection rate both remain comparable to two-dimensional models. The parallel electric fields are supported predominantly by the electron pressure tensor and electron inertia, while turbulent dissipation remains small.

4.
Phys Rev Lett ; 110(13): 135004, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581331

ABSTRACT

The electron diffusion region during magnetic reconnection lies in different regimes depending on the pressure anisotropy, which is regulated by the properties of thermal electron orbits. In kinetic simulations at the weakest guide fields, pitch angle mixing in velocity space causes the outflow electron pressure to become nearly isotropic. Above a threshold guide field that depends on a range of parameters, including the normalized electron pressure and the ion-to-electron mass ratio, electron pressure anisotropy develops in the exhaust and supports extended current layers. This new regime with electron current sheets extending to the system size is also reproduced by fluid simulations with an anisotropic closure for the electron pressure. It offers an explanation for recent spacecraft observations.

5.
Phys Rev Lett ; 110(20): 205002, 2013 May 17.
Article in English | MEDLINE | ID: mdl-25167422

ABSTRACT

Recent fully nonlinear, kinetic three-dimensional simulations of magnetic reconnection [W. Daughton et al., Nat. Phys. 7, 539 (2011)] evolve structures and exhibit dynamics on multiple scales, in a manner reminiscent of turbulence. These simulations of reconnection are among the first to be performed at sufficient spatiotemporal resolution to allow formal quantitative analysis of statistical scaling, which we present here. We find that the magnetic field fluctuations generated by reconnection are anisotropic, have nontrivial spatial correlation, and exhibit the hallmarks of finite range fluid turbulence: they have non-Gaussian distributions, exhibit extended self-similarity in their scaling, and are spatially multifractal. Furthermore, we find that the rate at which the fields do work on the particles, J · E, is also multifractal, so that magnetic energy is converted to plasma kinetic energy in a manner that is spatially intermittent. This suggests that dissipation in this sense in collisionless reconnection on kinetic scales has an analogue in fluidlike turbulent phenomenology, in that it proceeds via multifractal structures generated by an intermittent cascade.

6.
Phys Rev Lett ; 109(19): 195001, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23215389

ABSTRACT

High resolution kinetic simulations of collisionless plasma driven by shear show the development of turbulence characterized by dynamic coherent sheetlike current density structures spanning a range of scales down to electron scales. We present evidence that these structures are sites for heating and dissipation, and that stronger current structures signify higher dissipation rates. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform and patchy.

7.
Phys Rev Lett ; 108(22): 225005, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-23003609

ABSTRACT

Spatially resolved, diagnostic signatures across the X-line and electron-diffusion region (EDR) by the Polar spacecraft are reported at Earth's magnetopause. The X-line traversal has a local electron's skin depth scale. First, resolved EDR profiles are presented with peak electron thermal Mach numbers >1.5, anisotropy >7, calibrated electron agyrotropy >1, and misordered expansion parameters indicative of demagnetization and strong (150 eV) increases in electron temperature. The amplitude and phase of these profiles correlate well with a guide geometry kinetic simulation of collisionless magnetic reconnection. Such high resolution diagnosis has been made possible by data processing techniques that afford an 11-fold reduction in the aliasing time for the electron moments.

8.
Phys Rev Lett ; 109(6): 065004, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-23006277

ABSTRACT

By conducting two-dimensional hybrid simulations of an infinitely long field-reversed θ-pinch discharge we discover a new type of plasma rotation, which rapidly develops at the plasma edge in the ion diamagnetic direction due to the self-consistent generation of a Hall-driven radial electric field. This effect is different from the previously identified end-shorting and particle-loss mechanisms. We also demonstrate flutelike perturbations frequently inferred in experiments and show that in the absence of axial contraction effects they may quickly alter the toroidal symmetry of the plasma.

9.
Phys Rev Lett ; 108(18): 185001, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22681084

ABSTRACT

Using fully kinetic 3D simulations of magnetic reconnection in asymmetric antiparallel configurations, we demonstrate that an electromagnetic lower-hybrid drift instability (LHDI) localized near the X line can substantially modify the reconnection mechanism in the regimes with large asymmetry, a moderate ratio of electron to ion temperature, and low plasma ß. However, the mode saturates at a small amplitude in the regimes typical of Earth's magnetopause. In these cases, LHDI-driven turbulence is predominantly localized along the separatrices on the low-ß side of the current sheet, in agreement with spacecraft observations.

10.
Phys Rev Lett ; 107(2): 025002, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21797613

ABSTRACT

Using fully kinetic simulations of the island coalescence problem for a range of system sizes greatly exceeding kinetic scales, the phenomenon of flux pileup in the collisionless regime is demonstrated. While small islands on the scale of λ ≤ 5 ion inertial length (d(i)) coalesce rapidly and do not support significant flux pileup, coalescence of larger islands is characterized by large flux pileup and a weaker time averaged reconnection rate that scales as √(d(i)/λ) while the peak rate remains nearly independent of island size. For the largest islands (λ = 100d(i)), reconnection is bursty and nearly shuts off after the first bounce, reconnecting ~20% of the available flux.

11.
Phys Rev Lett ; 103(6): 065004, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19792577

ABSTRACT

Using fully kinetic simulations with a Fokker-Planck collision operator, it is demonstrated that Sweet-Parker reconnection layers are unstable to plasmoids (secondary islands) for Lundquist numbers beyond S greater, similar 1000. The instability is increasingly violent at higher Lundquist numbers, both in terms of the number of plasmoids produced and the super-Alfvénic growth rate. A dramatic enhancement in the reconnection rate is observed when the half-thickness of the current sheet between two plasmoids approaches the ion inertial length. During this transition to kinetic scales, the reconnection electric field rapidly exceeds the runaway limit, resulting in the formation of electron-scale current layers that are unstable to the continual formation of new plasmoids.

12.
Phys Rev Lett ; 101(12): 125001, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18851379

ABSTRACT

Using the largest three-dimensional particle-in-cell simulations to date, collisionless magnetic reconnection in large-scale electron-positron plasmas without a guide field is shown to involve complex interaction of tearing and kink modes. The reconnection onset is patchy and occurs at multiple sites which self-organize to form a single, large diffusion region. The diffusion region tends to elongate in the outflow direction and become unstable to secondary kinking and formation of "plasmoid-rope" structures with finite extent in the current direction. The secondary kink folds the reconnection current layer, while plasmoid ropes at times follow the folding of the current layer. The interplay between these secondary instabilities plays a key role in controlling the time-dependent reconnection rate in large-scale systems.

13.
14.
Phys Rev Lett ; 62(20): 2342-2345, 1989 May 15.
Article in English | MEDLINE | ID: mdl-10039961
SELECTION OF CITATIONS
SEARCH DETAIL
...