Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(26): 16358-16368, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35754901

ABSTRACT

In metal-organic frameworks, confined space as a chemical nanoreactor is as important as organocatalysis or coordinatively unsaturated metal site catalysis. In the present study, a set of mixed-ligand structures with UiO-66 architecture have been prepared. To the best of our knowledge, for the first time, structures derived by the solvothermal mixing ligand method and ultrasonic-assisted linker exchange approaches have been compared. Additionally, the relationship between the preparation method, structural properties, and catalytic efficiency of the prepared materials in the Knoevenagel condensation of aldehydes has been investigated. The prepared catalyst is very stable and can be recovered and reused for at least ten periods.

2.
Analyst ; 144(15): 4596-4612, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31241069

ABSTRACT

Ion-imprinted polymer-decorated SBA-15 (SBA-15-IIP) for the adsorption of copper was synthesized and characterized using different techniques, including FT-IR, XRD, TG/DTA, SEM, BET, and TEM. It was used as a green, efficient and rapid sorbent for the removal of Cu(ii) from aqueous solution. The effect of several parameters on the removal percentage of copper was studied using the central composite design. The equilibrium data were investigated using the Langmuir and Freundlich isotherm models, and found to be well-fitted by the Langmuir model with the maximum adsorption capacity of 322.58 mg g-1. The adsorption kinetics was investigated using four models, and found to be well-fitted by the pseudo-second-order model. Also, the recyclability of SBA-15-IIP was studied, and the results after 6 cycles demonstrated that SBA-15-IIP was a promising sorbent for the removal of Cu(ii) from aqueous solution. Subsequently, SBA-15-IIP was used as an efficient and selective sorbent for the extraction of Cu(ii). Various parameters affecting the extraction efficiency of the analyte were investigated and optimized using the Box-Behnken design. The optimized methodology presented good linearity between 0.2 and 100 µg L-1 (R2 > 0.9946) and a detection limit of 0.05 µg L-1. The method had an enhancement factor of 220 and relative standard deviation (RSD) of 3.1% and 4.5% for intra-day and inter-day, respectively.

3.
Talanta ; 178: 473-480, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29136850

ABSTRACT

In this study, a novel generation of deep eutectic solvents (DESs) was used as an acceptor phase in three-phase hollow fiber liquid phase microextraction (HF-LPME) based on two immiscible organic phases. It was compared with other common DESs for extraction and preconcentration of dydrogesterone (DYD) and cyproterone acetate (CPA) from urine and plasma samples. The extracted analytes were analyzed by high performance liquid chromatography with UV-vis detector (HPLC-UV). This phosphonium based DES due to low volatility, low price and multifunctionality introduced itself as worthy next generation of acceptor phase in HF-LPME. The factors affected on extraction efficiency of the analytes were investigated and optimized. The performance of the proposed method was studied in terms of linear ranges (LRs from 1 to 500µgL-1 with R2 ≥ 0.9946), precision (RSD% ≤ 6.3) and limits of detection (LODs in the range of 0.5-2µgL-1). Under the optimized conditions, preconcentration factors in the range of 187-428 were obtained. Finally, the method was applied to the analysis of DYD and CPA in human urine and plasma samples and desirable results were obtained.


Subject(s)
Liquid Phase Microextraction/methods , Onium Compounds/chemistry , Solvents/chemistry , Trityl Compounds/chemistry , Adolescent , Adult , Cyproterone Acetate/blood , Cyproterone Acetate/urine , Dydrogesterone/blood , Dydrogesterone/urine , Female , Humans , Young Adult
4.
Anal Chim Acta ; 953: 1-9, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28010737

ABSTRACT

A new supramolecular solvent (SUPRAS) made up of aggregates of gemini surfactant was introduced. A microextraction method, based on the SUPRAS followed with high performance liquid chromatography-ultraviolet detection, was applied for the determination of parabens in cosmetics, beverages and water samples. A SUPRAS is a nano-structured liquid made up of surfactant aggregates synthesized through a self-assembly process. In the present work, a new gemini-based SUPRAS was introduced. Methyl paraben (MP), ethyl paraben (EP), and propyl paraben (PP) were extracted on the basis of π-cation and Van der Waals interactions into the SUPRAS. The parameter affecting the extraction of target analytes (i.e., the amount of surfactant and volume of propanol as major components comprising the supramolecular solvent, sample solution pH, salt addition, ultrasonic and centrifugation time) were investigated and optimized by one-variable-at-a-time method. Under the optimum conditions, the preconcentration factors of 98, 143 and 156 were obtained for MP, EP and PP, respectively. The linearity ranged from 0.5 to 0.7-200 µg L-1 with the correlation of determination of (R2) ≥ 0.9938. The gemini-based SUPRAS followed by HPLC-UV has been found to have excellent detection sensitivity with a limit of detection (LOD, S/N = 3) of 0.5 µg L-1 for EP and PP, and 0.7 µg L-1 for MP. Good recoveries over the range of 92.0-108.3% assured the accuracy of the amount of parabens distinguished in the non-spiked samples.


Subject(s)
Liquid Phase Microextraction , Propanols/chemistry , Solvents/chemistry , Surface-Active Agents/chemistry , Beverages/analysis , Chromatography, High Pressure Liquid , Cosmetics/analysis , Drinking Water/analysis , Wastewater/analysis
5.
ACS Comb Sci ; 17(6): 341-7, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25946638

ABSTRACT

Magnetic Fe(OH)3@Fe3O4 nanoparticles were successfully prepared and characterized. This magnetic nanocomposite was employed as an efficient, reusable, and environmentally benign heterogeneous catalyst for the direct amidation of alcohols with amine hydrochloride salts. Several derivatives of primary, secondary and tertiary amides were synthesized in moderate to good yields in the presence of this catalytic system. The catalyst was successfully recycled and reused up to six times without significant loss of its catalytic activity.


Subject(s)
Alcohols/chemistry , Amines/chemistry , Ferric Compounds/chemistry , Amides/chemistry , Catalysis , Indicators and Reagents , Magnetics , Microscopy, Electron, Scanning , Nanoparticles , Oxidation-Reduction , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...