Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 300: 113731, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34560462

ABSTRACT

Farmers' investment in more efficient irrigation systems represents a primary adaptation strategy when confronting climate change. However, the regional benefits of these investments and their influence on the conflicting demands among different water dependent stakeholders for intensely irrigated regions remains an open question. Using the Pacific Northwest of the United States as an illustrative region of focus, we show that higher irrigation efficiency has diverse effects across stakeholders that are contingent on many local climatic, institutional and infrastructural factors such as the availability of water storage, the location of hydropower generators, and water rights. These complexities limit simple abstractions of irrigation efficiency as broader policy challenge and are central to its inclusion within the class of "wicked problems". Additionally, we argue that the widely used rebound effect concept, which implicitly discourages irrigation efficiency supporting policies, should not be assumed to fully capture the nuances of the complex suite of regional impacts that emerge from irrigation efficiency investments. Consequently, the evaluation of irrigation efficiency investments requires a broader framing across a diversity of perspectives. policies and actions that are pluralistic, context-specific, and closely engage various groups of stakeholders in the policymaking process.


Subject(s)
Agricultural Irrigation , Climate Change , Farmers , Humans , United States , Water , Water Supply
2.
J Environ Manage ; 287: 112301, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33706089

ABSTRACT

Wheat covers a significant fraction of the US Pacific Northwest (PNW) dryland agriculture. Past studies have suggested that management practices can differentially affect productivity and emission of greenhouse gases (GHGs) across the different agro-ecological Zones (AEZs) in PNW. In this study we used CropSyst, a biophysically-based cropping systems model that simulates crop processes and water and nitrogen cycles, with the purpose of evaluating relevant scenarios and contributing analyses to inform adaptation and mitigation strategies aimed at reducing and managing the risks of climate change. We compared the baseline historical period of 1980-2010 with three future periods: 2015-2045 (2030s), 2035-2065 (2050s), and 2055-2085 (2070s). The uncertainty of the future climate was captured using 12 general circulation models (GCMs) forced with two representative carbon dioxide concentration pathways (RCP 4.5 and 8.5). The study region was divided into three AEZs: crop-fallow (CF), continuous cropping to fallow transition (CCF), and continuous cropping (CC). The results indicated that areas with higher precipitation, N fertilization, and mineralization produced more N2O emissions during both baseline and future periods. The average annual N2O emission during the baseline period was between 1.8 and 4.1 kg ha-1 depending on AEZ. The overall N2O emission showed decreasing future trends from 2030s to 2070s which resulted from a higher proportion of N used by crops. From 2015 to 2085 under RCP 4.5, the average N2O emission was between 1.8 and 4.4 kg ha-1 year-1. They are slightly higher under RCP 8.5 since it is a warmer scenario. The soil organic carbon (SOC) content decreased during the baseline period while SOC did not reach equilibrium with the cropping systems considered in the study. SOC decreased during the future periods as well, with rate of change ranging from -146 to -352 kg ha-1year-1 depending on AEZ and RCP. Warming increased SOC oxidation in future scenarios, but after an initial increase of SOC losses during the 2030s period, the rate of SOC losses decreased in the 2050s, and more so in the 2070s as SOC and carbon input reached equilibrium with losses. Higher carbon input resulted from higher biomass production under elevated CO2 scenarios. The total GHG emissions were 1.95, 3.16 and 4.84 Mg CO2-equivalent ha-1year-1 under RCP 4.5, and 1.99, 3.43 and 5.49 Mg CO2-equivalent ha-1year-1 under RCP 8.5 during 2070s in CF, CCF and CC respectively, with N2O accounting for about 81% of total GHG emissions.


Subject(s)
Greenhouse Gases , Agriculture , Carbon , Climate Change , Nitrous Oxide/analysis , Northwestern United States , Soil , Water
3.
Nat Food ; 2(11): 862-872, 2021 11.
Article in English | MEDLINE | ID: mdl-37117500

ABSTRACT

Food systems are increasingly challenged to meet growing demand for specialty crops due to the effects of climate change and increased competition for resources. Here, we apply an integrated methodology that includes climate, crop, economic and life cycle assessment models to US potato and tomato supply chains. We find that supply chains for two popular processed products in the United States, French fries and pasta sauce, will be remarkably resilient, through planting adaptation strategies that avoid higher temperatures. Land and water footprints will decline over time due to higher yields, and greenhouse gas emissions can be mitigated by waste reduction and process modification. Our integrated methodology can be applied to other crops, health-based consumer scenarios (fresh versus processed) and geographies, thereby informing decision-making throughout supply chains. Employing such methods will be essential as food systems are forced to adapt and transform to become carbon neutral due to the imperatives of climate change.

4.
Nat Commun ; 11(1): 3473, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651377

ABSTRACT

Irrigated agriculture in snow-dependent regions contributes significantly to global food production. This study quantifies the impacts of climate change on irrigated agriculture in the snow-dependent Yakima River Basin (YRB) in the Pacific Northwest United States. Here we show that increasingly severe droughts and temperature driven reductions in growing season significantly reduces expected annual agricultural productivity. The overall reduction in mean annual productivity also dampens interannual yield variability, limiting yield-driven revenue fluctuations. Our findings show that farmers who adapt to climate change by planting improved crop varieties may potentially increase their expected mean annaul productivity in an altered climate, but remain strongly vulnerable to irrigation water shortages that substantially increase interannual yield variability (i.e., increasing revenue volatility). Our results underscore the importance for crop adaptation strategies to simultaneously capture the biophysical effects of warming as well as the institutional controls on water availability.

6.
J Diabetes Metab Disord ; 11(1): 26, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23497609

ABSTRACT

BACKGROUND: According to the WHO report released in 2000, about 121 million people worldwide suffer from depression. The present study aimed to explore factors influencing depression in mothers from Rey, South of Tehran, Iran; who had elementary school children. METHODS: The cross-sectional survey was conducted in spring 2010. Four hundred thirty mothers who had elementary school children, were selected through a two stage cluster sampling. Beck Depression Inventory (BDI) was used to assess depression in the mothers and a 24-hour food recall was used to collect information regarding their dietary intake. General information regarding economic condition and socio-economic status were also gathered using a questionnaire. The data was analyzed using chi-square, one-way analysis of variance and simple regression tests. RESULTS: In our study, 51.4% of the mothers suffered from depression. There was an inverse correlation between the educational level of the mothers and the heads of household, their occupational status, their marital status, their socio-economic condition and depression. Conversely, any increase in the family size worsened the depression. The daily intake of different macronutrients, except for fat, was lower in individuals of depressed group. CONCLUSION: The present study emphasized the fact that more attention should be paid to the educational level and economic condition of the family in order to reduce maternal depression. Family size also plays an important role in this regard.

7.
J Diabetes Metab Disord ; 11(1): 29, 2012 12 22.
Article in English | MEDLINE | ID: mdl-23497656

ABSTRACT

BACKGROUND: According to the WHO report released in 2000, about 121 million people worldwide suffer from depression. The present study aimed to explore factors influencing depression in mothers from Rey, South of Tehran, Iran; who had elementary school children. METHODS: The cross-sectional survey was conducted in spring 2010. Four hundred thirty mothers, who had elementary school children, were selected through a two stage cluster sampling. Beck Depression Inventory (BDI) was used to assess depression in the mothers and a 24-hour food recall was used to collect information regarding their dietary intake. General information regarding economic condition and socio-economic status were also gathered using a questionnaire. The data was analyzed using chi-square, one-way analysis of variance and simple regression tests. RESULTS: In our study, 51.4% of the mothers suffered from depression. There was an inverse correlation between the educational level of the mothers and the heads of household, their occupational status, their marital status, their socio-economic condition and depression. Conversely, any increase in the family size worsened the depression. The daily intake of different macronutrients, except for fat, was lower in individuals of depressed group. CONCLUSION: The present study emphasized the fact that more attention should be paid to the educational level and economic condition of the family in order to reduce maternal depression. Family size also plays an important role in this regard.

SELECTION OF CITATIONS
SEARCH DETAIL
...