Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Res Clin Pract ; 189: 109945, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35690269

ABSTRACT

Diabetes mellitus (DM) has been the most prevalent global metabolic disease, turning into a serious risk for human health. Several researches have recorded a role for inflammation and immunity in the pathogenesis of both in T1DM and in T2DM. Lots of chemical agents are available to control and to cure diabetic patients, which are not always sufficient for euglycemia maintenance and late stage diabetic complications avoidance. Therefore, newborn therapeutic methods to refine clinical outcomes in DM are required. Nucleic-acid-based therapy also known as gene expression level regulator within the target cells has been calculated to be promising in various diseases. Thus, pronounced attempts have been dedicated to develop new targeted molecular therapy aimed at improving insulin resistance in DM. This review mainly focuses on recent progress in DM molecular therapy and whether, has potential efficacy against inflammatory mediators involved in DM.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin Resistance , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Humans , Infant, Newborn , Inflammation/complications
2.
Neuromodulation ; 25(8): 1351-1363, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35088756

ABSTRACT

OBJECTIVES: Coma state and loss of consciousness are associated with impaired brain activity, particularly gamma oscillations, that integrate functional connectivity in neural networks, including the default mode network (DMN). Mechanical ventilation (MV) in comatose patients can aggravate brain activity, which has decreased in coma, presumably because of diminished nasal airflow. Nasal airflow, known to drive functional neural oscillations, synchronizing distant brain networks activity, is eliminated by tracheal intubation and MV. Hence, we proposed that rhythmic nasal air puffing in mechanically ventilated comatose patients may promote brain activity and improve network connectivity. MATERIALS AND METHODS: We recorded electroencephalography (EEG) from 15 comatose patients (seven women) admitted to the intensive care unit because of opium poisoning and assessed the activity, complexity, and connectivity of the DMN before and during the nasal air-puff stimulation. Nasal cavity air puffing was done through a nasal cannula controlled by an electrical valve (open duration of 630 ms) with a frequency of 0.2 Hz (ie, 12 puff/min). RESULTS: Our analyses demonstrated that nasal air puffing enhanced the power of gamma oscillations (30-100 Hz) in the DMN. In addition, we found that the coherence and synchrony between DMN regions were increased during nasal air puffing. Recurrence quantification and fractal dimension analyses revealed that EEG global complexity and irregularity, typically seen in wakefulness and conscious state, increased during rhythmic nasal air puffing. CONCLUSIONS: Rhythmic nasal air puffing, as a noninvasive brain stimulation method, opens a new window to modifying the brain connectivity integration in comatose patients. This approach may potentially influence comatose patients' outcomes by increasing brain reactivity and network connectivity.


Subject(s)
Coma , Respiration, Artificial , Humans , Female , Coma/diagnostic imaging , Coma/therapy , Default Mode Network , Brain/physiology , Electroencephalography , Magnetic Resonance Imaging , Brain Mapping , Neural Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...