Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Genet Syst ; 96(2): 105, 2021.
Article in English | MEDLINE | ID: mdl-34261833

ABSTRACT

Legends to Figures 4 and 5 (p. 7) should be exchanged. Below are the correct legends to Figure 4 and Figure 5. Fig. 4. Interconnection of DSCR4 overexpression-mediated perturbed pathways. KEGG analysis of DSCR4 overexpression-mediated DEGs shows enrichment for the tightly interconnected pathways of the coagulation cascade and the complement cascade (highlighted in red) and further confirm the connection of these cascades with cell adhesion, migration and proliferation (red circle). Fig. 5. Expression profile of DSCR4 across human cell lines and tissues. According to Roadmap Epigenomics Project data, DSCR4 and DSCR8, which share a bidirectional promoter, are highly expressed only in K562 cells, a type of leukemia cell. Analysis of transcriptome data provided by Prescott et al. (2015) showed that DSCR4 and DSCR8 also display high expression in human and chimpanzee neural crest cells, which are critical migratory cells involved in facial morphogenesis in the embryo. (1) Data from Prescott et al. (2015). (2) Samples also include esophagus, lung, spleen and fetal large intestine. (3) Samples also include brain germinal matrix, hippocampus, fetal small intestine, stomach, left ventricle, small intestine, sigmoid colon, HEPG2 cells and HMEC cells. The PDF file for DOI: https://doi.org/10.1266/ggs.20-00012 has been replaced with the corrected version as of June 17, 2021.

2.
Genes Genet Syst ; 96(1): 1-11, 2021 May 08.
Article in English | MEDLINE | ID: mdl-33762515

ABSTRACT

Down syndrome in humans is caused by trisomy of chromosome 21. DSCR4 (Down syndrome critical region 4) is a de novo-originated protein-coding gene present only in human chromosome 21 and its homologous chromosomes in apes. Despite being located in a medically critical genomic region and an abundance of evidence indicating its functionality, the roles of DSCR4 in human cells are unknown. We used a bioinformatic approach to infer the biological importance and cellular roles of this gene. Our analysis indicates that DSCR4 is likely involved in the regulation of interconnected biological pathways related to cell migration, coagulation and the immune system. We also showed that these predicted biological functions are consistent with tissue-specific expression of DSCR4 in migratory immune system leukocyte cells and neural crest cells (NCCs) that shape facial morphology in the human embryo. The immune system and NCCs are known to be affected in Down syndrome individuals, who suffer from DSCR4 misregulation, which further supports our findings. Providing evidence for the critical roles of DSCR4 in human cells, our findings establish the basis for further experimental investigations that will be necessary to confirm the roles of DSCR4 in the etiology of Down syndrome.


Subject(s)
Gene Regulatory Networks , Protein Interaction Maps , RNA, Long Noncoding/genetics , Cell Line , Computational Biology , Humans , Metabolic Networks and Pathways , Neurogenesis/genetics , RNA, Long Noncoding/metabolism
3.
J Pept Sci ; 25(4): e3158, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30784138

ABSTRACT

Redox-active ruthenium complexes have been widely used in various fields; however, the harsh conditions required for their synthesis are not always conducive to their subsequent use in biological applications. In this study, we demonstrate the spontaneous formation of a derivative of tris(bipyridine)ruthenium at 37°C through the coordination of three bipyridyl ligands incorporated into a peptide to a ruthenium ion. Specifically, we synthesized six bipyridyl-functionalized peptides with randomly chosen sequences. The six peptides bound to ruthenium ions and exhibited similar spectroscopic and electrochemical features to tris(bipyridine)ruthenium, indicating the formation of ruthenium complexes as we anticipated. The photo-excited triplet state of the ruthenium complex formed in the peptides exhibited an approximately 1.6-fold longer lifetime than that of tris(bipyridine)ruthenium. We also found that the photo-excited state of the ruthenium complexes was able to transfer an electron to methyl viologen, indicating that the ruthenium complexes formed in the peptides had the same ability to transfer charge as tris(bipyridine)ruthenium. We believe that this strategy of producing ruthenium complexes in peptides under mild conditions will pave the way for developing new metallopeptides and metalloproteins containing functional metal-complexes.


Subject(s)
Organometallic Compounds/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Ruthenium/chemistry , Molecular Structure , Organometallic Compounds/chemistry , Oxidation-Reduction , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...