Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38610577

ABSTRACT

Josephson junctions (JJs) are superconductor-based devices used to build highly sensitive magnetic flux sensors called superconducting quantum interference devices (SQUIDs). These sensors may vary in design, being the radio frequency (RF) SQUID, direct current (DC) SQUID, and hybrid, such as D-SQUID. In addition, recently many of JJ's applications were found in spiking models of neurons exhibiting nearly biological behavior. In this study, we propose and investigate a new circuit model of a sensory neuron based on DC SQUID as part of the circuit. The dependence of the dynamics of the designed model on the external magnetic flux is demonstrated. The design of the circuit and derivation of the corresponding differential equations that describe the dynamics of the system are given. Numerical simulation is used for experimental evaluation. The experimental results confirm the applicability and good performance of the proposed magnetic-flux-sensitive neuron concept: the considered device can encode the magnetic flux in the form of neuronal dynamics with the linear section. Furthermore, some complex behavior was discovered in the model, namely the intermittent chaotic spiking and plateau bursting. The proposed design can be efficiently applied to developing the interfaces between circuitry and spiking neural networks. However, it should be noted that the proposed neuron design shares the main limitation of all the superconductor-based technologies, i.e., the need for a cryogenic and shielding system.

2.
Curr Biol ; 33(3): 423-433.e5, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36638796

ABSTRACT

The peopling history of North Asia remains largely unexplored due to the limited number of ancient genomes analyzed from this region. Here, we report genome-wide data of ten individuals dated to as early as 7,500 years before present from three regions in North Asia, namely Altai-Sayan, Russian Far East, and the Kamchatka Peninsula. Our analysis reveals a previously undescribed Middle Holocene Siberian gene pool in Neolithic Altai-Sayan hunter-gatherers as a genetic mixture between paleo-Siberian and ancient North Eurasian (ANE) ancestries. This distinctive gene pool represents an optimal source for the inferred ANE-related population that contributed to Bronze Age groups from North and Inner Asia, such as Lake Baikal hunter-gatherers, Okunevo-associated pastoralists, and possibly Tarim Basin populations. We find the presence of ancient Northeast Asian (ANA) ancestry-initially described in Neolithic groups from the Russian Far East-in another Neolithic Altai-Sayan individual associated with different cultural features, revealing the spread of ANA ancestry ∼1,500 km further to the west than previously observed. In the Russian Far East, we identify 7,000-year-old individuals that carry Jomon-associated ancestry indicating genetic links with hunter-gatherers in the Japanese archipelago. We also report multiple phases of Native American-related gene flow into northeastern Asia over the past 5,000 years, reaching the Kamchatka Peninsula and central Siberia. Our findings highlight largely interconnected population dynamics throughout North Asia from the Early Holocene onward.


Subject(s)
Gene Pool , Genome, Human , Humans , History, Ancient , Infant, Newborn , Asia , Russia , Siberia , Human Migration , Genetics, Population
3.
Sensors (Basel) ; 22(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890894

ABSTRACT

Sensors based on chaotic oscillators have a simple design, combined with high sensitivity and energy efficiency. Among many developed schemes of such sensors, the promising one is based on the Duffing oscillator, which possesses a remarkable property of demonstrating chaotic oscillations only in the presence of a weak sine wave at the input. The main goal of this research was to evaluate the maximal sensitivity of a practically implemented metal detector based on the Duffing oscillator and compare its sensitivity with conventional sensors. To achieve high efficiency of the Duffing-based design, we proposed an algorithm which performs a bifurcation analysis of any chaotic system, classifies the oscillation modes and determines the system sensitivity to a change in different parameters. We apply the developed algorithm to improve the sensitivity of the electronic circuit implementing the Duffing oscillator, serving as a key part of a three-coil metal detector. We show that the developed design allows detecting the presence of metal objects near the coils more reliably than the conventional signal analysis techniques, and the developed detector is capable of sensing a large metal plate at distances up to 2.8 of the coil diameter, which can be considered a state-of-the-art result.

4.
Ultrasound J ; 13(1): 32, 2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34146184

ABSTRACT

The importance of functional right ventricular failure and resultant splanchnic venous congestion has long been under-appreciated and is difficult to assess by traditional physical examination and standard diagnostic imaging. The recent development of the venous excess ultrasound score (VExUS) and growth of point-of-care ultrasound in the last decade has made for a potentially very useful clinical tool. We review the rationale for its use in several pathologies and illustrate with several clinical cases where VExUS was pivotal in clinical management.

5.
Sensors (Basel) ; 19(19)2019 Oct 05.
Article in English | MEDLINE | ID: mdl-31590395

ABSTRACT

Engineering solutions based on dynamical chaos may improve the characteristics of various sensors such as metal detectors, salinometers, optical and magnetic field sensors, and so on. In this study, we investigated the possibility of creating inductive sensors based on Sprott chaotic oscillators with a planar printed circuit board inductive coil. The electric circuit of each sensor was obtained by merging two parts, namely, a harmonic oscillator and a nonlinear filter. A novel method for real-time oscillation analysis using a bandpass filter is presented. The suggested design technique was experimentally validated, and the sensor prototype showed characteristics making it practically applicable. In addition, the proposed technique can be used for the development of other types of sensors based on chaotic oscillators.

SELECTION OF CITATIONS
SEARCH DETAIL
...