Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 123(12): 1620-1634, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38720465

ABSTRACT

Type II topoisomerases (TopoIIs) are ubiquitous enzymes that are involved in crucial nuclear processes such as genome organization, chromosome segregation, and other DNA metabolic processes. These enzymes function as large, homodimeric complexes that undergo a complex cycle of binding and hydrolysis of two ATP molecules in their ATPase domains, which regulates the capture and passage of one DNA double-helix through a second, cleaved DNA molecule. This process requires the transmission of information about the state of the bound nucleotide over vast ranges in the TopoII complex. How this information is transmitted at the molecular level to regulate TopoII functions and how protein substitutions disrupt these mechanisms remains largely unknown. Here, we employed extensive microsecond-scale molecular dynamics simulations of the yeast TopoII enzyme in multiple nucleotide-bound states and with amino acid substitutions near both the N and C termini of the complex. Simulation results indicate that the ATPase domains are remarkably flexible on the sub-microsecond timescale and that these dynamics are modulated by the identity of the bound nucleotides and both local and distant amino acid substitutions. Network analyses point toward specific allosteric networks that transmit information about the hydrolysis cycle throughout the complex, which include residues in both the protein and the bound DNA molecule. Amino acid substitutions weaken many of these pathways. Together, our results provide molecular level details on how the TopoII catalytic cycle is controlled through nucleotide binding and hydrolysis and how mutations may disrupt this process.


Subject(s)
DNA Topoisomerases, Type II , Molecular Dynamics Simulation , Allosteric Regulation , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Protein Domains , Models, Molecular
2.
bioRxiv ; 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-37577673

ABSTRACT

Type II topoisomerases (TopoIIs) are ubiquitous enzymes that are involved in crucial nuclear processes such as genome organization, chromosome segregation, and other DNA metabolic processes. These enzymes function as large, homodimeric complexes that undergo a complex cycle of binding and hydrolysis of two ATP molecules in their ATPase domains, which regulates the capture and passage of one DNA double-helix through a second, cleaved DNA molecule. This process requires the transmission of information about the state of the bound nucleotide over vast ranges in the TopoII complex. How this information is transmitted at the molecular level to regulate TopoII functions and how protein substitutions disrupt these mechanisms remains largely unknown. Here, we employed extensive microsecond scale molecular dynamics simulations of the yeast TopoII enzyme in multiple nucleotide-bound states and with amino acid substitutions near both the N- and C-terminals of the complex. Simulation results indicate that the ATPase domains are remarkably flexible on the sub-microsecond timescale and that these dynamics are modulated by the identity of the bound nucleotides and both local and distant amino acid substitutions. Network analyses point towards specific allosteric networks that transmit information about the hydrolysis cycle throughout the complex, which include residues in both the protein and the bound DNA molecule. Amino acid substitutions weaken many of these pathways. Together, our results provide molecular-level details on how the TopoII catalytic cycle is controlled through nucleotide binding and hydrolysis and how mutations may disrupt this process.

3.
Biophys Chem ; 304: 107126, 2024 01.
Article in English | MEDLINE | ID: mdl-37924711

ABSTRACT

The functions of many proteins are associated with interconversions among conformational substates. However, these substates can be difficult to measure experimentally, and determining contributions from hydration changes can be especially difficult. Here, we assessed the use of pressure perturbations to sample the substates accessible to the Escherichia coli lactose repressor protein (LacI) in various liganded forms. In the presence of DNA, the regulatory domain of LacI adopts an Open conformation that, in the absence of DNA, changes to a Closed conformation. Increasing the simulation pressure prevented the transition from an Open to a Closed conformation, in a similar manner to the binding of DNA and anti-inducer, ONPF. The results suggest the hydration of specific residues play a significant role in determining the population of different LacI substates and that simulating pressure perturbation could be useful for assessing the role of hydration changes that accompany functionally-relevant amino acid substitutions.


Subject(s)
Escherichia coli Proteins , Lac Repressors/chemistry , Lac Repressors/metabolism , Protein Binding/genetics , Escherichia coli Proteins/chemistry , DNA/chemistry , Escherichia coli/metabolism , Protein Conformation
4.
J Chem Theory Comput ; 17(5): 2964-2990, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33878263

ABSTRACT

A new classical nonpolarizable force field, KBFF20, for the simulation of peptides and proteins is presented. The force field relies heavily on the use of Kirkwood-Buff theory to provide a comparison of simulated and experimental Kirkwood-Buff integrals for solutes containing the functional groups common in proteins, thus ensuring intermolecular interactions that provide a good balance between the peptide-peptide, peptide-solvent, and solvent-solvent distributions observed in solution mixtures. In this way, it differs significantly from other biomolecular force fields. Further development and testing of the intermolecular potentials are presented here. Subsequently, rotational potentials for the ϕ/ψ and χ dihedral degrees of freedom are obtained by analysis of the Protein Data Bank, followed by small modifications to provide a reasonable balance between simulated and observed α and ß percentages for small peptides. This, the first of two articles, describes in detail the philosophy and development behind KBFF20.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Databases, Protein , Molecular Dynamics Simulation , Thermodynamics
5.
J Chem Theory Comput ; 14(4): 1823-1827, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29506385

ABSTRACT

An accurate depiction of electrostatic interactions in molecular dynamics requires the correct number of ions in the simulation box to capture screening effects. However, the number of ions that should be added to the box is seldom given by the bulk salt concentration because a charged biomolecule solute will perturb the local solvent environment. We present a simple method for calculating the number of ions that requires only the total solute charge, solvent volume, and bulk salt concentration as inputs. We show that the most commonly used method for adding salt to a simulation results in an effective salt concentration that is too high. These findings are confirmed using simulations of lysozyme. We have established a web server where these calculations can be readily performed to aid simulation setup.


Subject(s)
Molecular Dynamics Simulation , Software , Ions , Proteins/chemistry , Sodium Chloride/chemistry , Static Electricity
6.
RSC Adv ; 8(29): 16052-16060, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-35542227

ABSTRACT

The structure of novel binary nanosponges consisting of (cholesterol-(K/D) n DEVDGC)3-trimaleimide units possessing a trigonal maleimide linker, to which either lysine (K)20 or aspartic acid (D)20 are tethered, has been elucidated by means of TEM. A high degree of agreement between these findings and structure predictions through explicit solvent and then coarse-grained molecular dynamics (MD) simulations has been found. Based on the nanosponges' structure and dynamics, caspase-6 mediated release of the model drug 5(6)-carboxyfluorescein has been demonstrated. Furthermore, the binary (DK20) nanosponges have been found to be virtually non-toxic in cultures of neural progenitor cells. It is of a special importance for the future development of cell-based therapies that DK20 nanosponges were taken up efficiently by leucocytes (WBC) in peripheral blood within 3 h of exposure. The percentage of live cells among the WBC was not significantly decreased by the DK20 nanosponges. In contrast to stem cell or leucocyte cell cultures, which have to be matched to the patient, autologous cells are optimal for cell-mediated therapy. Therefore, the nanosponges hold great promise for effective cell-based tumor targeting.

7.
Nanomedicine ; 13(8): 2555-2564, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28754467

ABSTRACT

A novel type of supramolecular aggregate, named a "nanosponge" was synthesized through the interaction of novel supramolecular building blocks with trigonal geometry. The cholesterol-(K/D)nDEVDGC)3-trimaleimide unit consists of a trigonal maleimide linker to which homopeptides (either K or D) of variable lengths (n=5, 10, 15, 20) and a consensus sequence for executioner caspases (DEVDGC) are added via Michael addition. Upon mixing in aqueous buffer cholesterol-(K)nDEVDGC)3-trimaleimides and a 1:1 mixture of cholesterol-(K/D)nDEVDGC)3-trimaleimides form stable nanosponges, whereas cholesterol-(D)nDEVDGC)3-trimaleimide is unable to form supramolecular aggregates with itself. The structure of the novel nanosponges was investigated through explicit solvent and then coarse-grained molecular dynamics (MD) simulations. The nanosponges are between 80 nm and several micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells.


Subject(s)
Cholesterol/analogs & derivatives , Drug Carriers/chemistry , Nanostructures/chemistry , Peptides/chemistry , Animals , Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Humans , Mice , Molecular Dynamics Simulation , Neoplasms/drug therapy , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...