Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2019: 9797104, 2019.
Article in English | MEDLINE | ID: mdl-31061830

ABSTRACT

Translocations are the most common type of structural chromosomal abnormalities. Unbalanced translocations are usually found in children who present with congenital abnormalities, developmental delay, or intellectual disability. Balanced translocations are usually found in adults who frequently present with reproductive failure; either subfertility, or recurrent pregnancy loss. Herein, we report the spectrum and frequency of translocations in a Sri Lankan cohort. A database of patients undergoing cytogenetic testing was maintained prospectively from January 2007 to December 2016 and analyzed, retrospectively. A total of 15,864 individuals were tested. Among them, 277 (1.7%) had translocations. There were 142 (51.3%) unbalanced translocations and 135 (48.7%) balanced translocations. Majority (160; 57.8%) were Robertsonian translocations. There were 145 (52.3%) children and adolescents aged less than 18 years with translocations, and 142 (97.9%) were unbalanced translocations. Majority [138 (95.2%)] were referred due to congenital abnormalities, developmental delay, or intellectual disability, and 91 were children with translocation Down syndrome. All adults aged 18 years or above (132) had balanced translocations. Subfertility and recurrent pregnancy loss [84 (63.6%)] and offspring(s) with congenital abnormalities [48 (36.4%)] were the most common indications in this group. Majority (68.2%) in this group were females with reciprocal translocations (55.3%). Chromosomes 21, 14, and 13 were the most commonly involved with rob(14q21q) [72 (26%)], rob(21q21q) [30 (13.7%)], and rob(13q14q) [34 (12.3%)] accounting for 52% of the translocations. Chromosomes 1, 8, 11, and 18 were most commonly involved in reciprocal translocations. The observed high frequency of chromosomal translocations in our cohort highlights the importance of undertaking cytogenetic evaluation and providing appropriate genetic counseling for individuals with the phenotypes associated with these translocations.


Subject(s)
Abortion, Habitual/genetics , Chromosomes, Human/genetics , Down Syndrome/genetics , Translocation, Genetic , Abortion, Habitual/epidemiology , Adolescent , Adult , Child , Child, Preschool , Down Syndrome/epidemiology , Female , Genetic Counseling , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , Sri Lanka/epidemiology
2.
BMC Med Genomics ; 11(1): 44, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29739404

ABSTRACT

BACKGROUND: Parental balanced reciprocal translocations can result in partial aneuploidies in the offspring due to unbalanced meiotic segregation during gametogenesis. Herein, we report the phenotypic and molecular cytogenetic characterization of a 2 years and 4 months old female child with partial trisomy 7q22 → qter. This is the first such reported case resulting from a parental balanced translocation involving the long arms of chromosomes 7 and 14. The phenotype of the proband was compared with that of previously reported cases of trisomy 7q21 → qter or 7q22 → qter resulting from parental balanced translocations. CASE PRESENTATION: The proband was born pre-term to a 34-year-old mother with a history of two first trimester miscarriages and an early infant death. She was referred at the age of 8 months for genetic evaluation due to prenatal and postnatal growth retardation, developmental delay and multiple congenital anomalies. On clinical evaluation, she had craniofacial dysmorphic features such as scaphocephaly, large anterior fontanelle with open posterior fontanelle, prominent occiput, triangular face, high forehead, hypertelorism, down slanting eyes, flat nasal bridge, small nose, low set ears, micro-retrognathia, high arched palate and short neck. Cranial computerized tomography scan showed lateral ventriculomegaly with features of early cerebral atrophy. Conventional cytogenetic analysis showed the karyotype 46,XX,der(14)t(7;14)(q22;q32)mat in the proband due to an unbalanced segregation of a maternal balanced translocation t(7;14)(q22;q32). Fluorescence in-situ hybridization analysis confirmed the partial trisomy 7q22 → qter in the proband with a minimal loss of genetic material on chromosome 14. Single nucleotide polymorphism array further confirmed the duplication on chromosome 7q22.1 → qter and a small terminal deletion on chromosome 14q32.3 → qter. CONCLUSION: We report the longest-surviving child with trisomy 7q22 → qter due to a parental balanced translocation between chromosomes 7 and 14. Clinical features observed in the proband were consistent with the consensus phenotype of partial trisomy 7q22 → qter reported in the scientific literature. Early diagnosis of these patients using molecular cytogenetic techniques is important for establishing the precise diagnosis and for making decisions pertaining to the prognostication and management of affected individuals.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 7/genetics , Maternal Inheritance/genetics , Translocation, Genetic , Trisomy/genetics , Adult , Child, Preschool , Female , Humans , Infant , Male , Pregnancy
3.
BMC Pediatr ; 18(1): 4, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29310616

ABSTRACT

BACKGROUND: Partial trisomy is often the result of an unbalanced segregation of a parental balanced translocation. Partial trisomy16q is characterized by a common, yet non-specific group of craniofacial dysmorphic features, and systemic malformations with limited post-natal survival. Most of the cases of partial trisomy 16q described in the scientific literature have reported only one, or less frequently two cardiac defects in the affected babies. Herein, we report a case of partial trisomy 16q21➔qter with multiple and complex cardiac defects that have not previously been reported in association with this condition. CASE PRESENTATION: We report the phenotypic and cytogenetic features of a Sri Lankan female infant with partial trisomy 16q21➔qter. The baby had a triangular face with downslanting eyes, low set ears and a cleft palate. Systemic abnormalities included multiple cardiac defects, namely double outlet right ventricle, ostium secundum atrial septal defect, mild pulmonary stenosis, small patent ductus arteriosus, and bilateral superior vena cavae. An anteriorly placed anus was also observed. The proband was trisomic for 16q21➔qter chromosomal region with a karyotype, 46,XX,der(15)t(15;16)(p13;q21)mat. The chromosomal anomaly was the result of an unbalanced segregation of a maternal balanced translocation; 46,XX,t(15;16)(p13;q21). Partial trisomy 16q was established by fluorescence in-situ hybridization analysis. CONCLUSIONS: The craniofacial dysmorphic features and the presence of cardiac and anorectal malformation in the proband are consistent with the phenotypic spectrum of partial trisomy 16q reported in the scientific literature. More proximal breakpoints in chromosome 16q are known to be associated with multiple cardiac abnormalities and poor long-term survival of affected cases. This report presents a unique case with multiple, complex cardiac defects that have not previously been described in association with a distal breakpoint in 16q. These findings have important diagnostic and prognostic implications.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Translocation, Genetic , Trisomy , Anal Canal/abnormalities , Chromosomes, Human, Pair 16 , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Female , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Humans , Infant, Newborn
4.
Case Rep Genet ; 2016: 4645716, 2016.
Article in English | MEDLINE | ID: mdl-27610251

ABSTRACT

A female child born preterm with intrauterine growth retardation and presenting with facial dysmorphism with clefts, microcephaly, limb deformities, and congenital abnormalities involving cardiovascular and urinary systems is described. Chromosomal analysis showed a de novo 46,XX,r(4)(p15.3q35) karyotype. The clinical features of the patient were compared with the phenotypic characteristics of 17 previously reported cases with ring chromosome 4 and those with Wolf-Hirschhorn syndrome (4p-). Clinical features observed in this case are consistent with the consensus phenotype in ring chromosome 4. Patent ductus arteriosus and bilateral talipes equinovarus observed in this baby widen the phenotypic spectrum associated with ring chromosome 4.

SELECTION OF CITATIONS
SEARCH DETAIL
...