Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathophysiology ; 26(3-4): 343-347, 2019.
Article in English | MEDLINE | ID: mdl-31542308

ABSTRACT

Vanillylmandelic acid, a catecholamine end-metabolite, has been shown to have several biological properties in previous studies, despite considered biologically inactive. We examined the potential effects of vanillylmandelic acid on the ischemic heart following myocardial infarction and reperfusion on a rat model. Thirty-four female Wistar rats were randomized into two groups, control and experimental. They were anesthetized and subjected to myocardial infarction through left anterior descending artery ligation. A previously studied dose of vanillylmandelic acid (10 mg/kg) was administered and the following parameters were studied during ischemia and reperfusion: a) mortality b) severity of ventricular tachyarrhythmias c) premature ventricular contractions and d) heart rate. Administration of vanillymandelic acid significantly reduced the severity of ventricular tachyarrhythmias and mortality rate during reperfusion, while it did not affect any other of the parameters studied. In conclusion, reperfusion injury was blunted through vanillylmandelic acid administration, which seems to be mediated by parasympathetic activation.

2.
Redox Rep ; 17(5): 181-6, 2012.
Article in English | MEDLINE | ID: mdl-22889828

ABSTRACT

OBJECTIVES: The objective of this study was to investigate the effects of catechin and epicatechin on the activity of the endogenous antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) (as well as the total antioxidant capacity (TAC)) of rats after intra-peritoneal (i.p.) administration. METHODS: Twenty-four Wistar rats were randomly divided into two groups: the experimental group which was administered daily with a 1:1 mixture of epicatechin and catechin at a concentration of 23 mg/kg body weight for 10 days and the control group which was injected daily with an equal amount of saline. Blood and urine samples were collected before and after the administration period, as well as 10 days after (follow-up). RESULTS: Intra-peritoneal administration of catechins led to a potent decrease in GPx levels and a significant increase in SOD levels. TAC was significantly increased in plasma and urine. Malonaldehyde levels in urine remained stable. In the animals treated with catechins, SOD activity showed a moderate negative correlation with GPx activity. DISCUSSION: Boosting the activity of the antioxidant enzymes could be a potential adjuvant approach for the treatment of the oxidative stress-related diseases.


Subject(s)
Catechin/pharmacology , Glutathione Peroxidase/metabolism , Superoxide Dismutase/metabolism , Animals , Catechin/administration & dosage , Enzyme Activation/drug effects , Female , Injections, Intraperitoneal , Random Allocation , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...