Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Respir Res ; 25(1): 38, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238846

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an inflammatory multisystemic disease caused by environmental exposures and/or genetic factors. Inherited alpha-1-antitrypsin deficiency (AATD) is one of the best recognized genetic factors increasing the risk for an early onset COPD with emphysema. The aim of this study was to gain a better understanding of the associations between comorbidities and specific biomarkers in COPD patients with and without AATD to enable future investigations aimed, for example, at identifying risk factors or improving care. METHODS: We focused on cardiovascular comorbidities, blood high sensitivity troponin (hs-troponin) and lipid profiles in COPD patients with and without AATD. We used clinical data from six German University Medical Centres of the MIRACUM (Medical Informatics Initiative in Research and Medicine) consortium. The codes for the international classification of diseases (ICD) were used for COPD as a main diagnosis and for comorbidities and blood laboratory data were obtained. Data analyses were based on the DataSHIELD framework. RESULTS: Out of 112,852 visits complete information was available for 43,057 COPD patients. According to our findings, 746 patients with AATD (1.73%) showed significantly lower total blood cholesterol levels and less cardiovascular comorbidities than non-AATD COPD patients. Moreover, after adjusting for the confounder factors, such as age, gender, and nicotine abuse, we confirmed that hs-troponin is a suitable predictor of overall mortality in COPD patients. The comorbidities associated with AATD in the current study differ from other studies, which may reflect geographic and population-based differences as well as the heterogeneous characteristics of AATD. CONCLUSION: The concept of MIRACUM is suitable for the analysis of a large healthcare database. This study provided evidence that COPD patients with AATD have a lower cardiovascular risk and revealed that hs-troponin is a predictor for hospital mortality in individuals with COPD.


Subject(s)
Cardiovascular Diseases , Pulmonary Disease, Chronic Obstructive , alpha 1-Antitrypsin Deficiency , Humans , alpha 1-Antitrypsin Deficiency/diagnosis , alpha 1-Antitrypsin Deficiency/epidemiology , alpha 1-Antitrypsin Deficiency/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Heart Disease Risk Factors , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology , Risk Factors , Troponin
3.
Brain Pathol ; 34(3): e13228, 2024 May.
Article in English | MEDLINE | ID: mdl-38012085

ABSTRACT

The current state-of-the-art analysis of central nervous system (CNS) tumors through DNA methylation profiling relies on the tumor classifier developed by Capper and colleagues, which centrally harnesses DNA methylation data provided by users. Here, we present a distributed-computing-based approach for CNS tumor classification that achieves a comparable performance to centralized systems while safeguarding privacy. We utilize the t-distributed neighborhood embedding (t-SNE) model for dimensionality reduction and visualization of tumor classification results in two-dimensional graphs in a distributed approach across multiple sites (DistSNE). DistSNE provides an intuitive web interface (https://gin-tsne.med.uni-giessen.de) for user-friendly local data management and federated methylome-based tumor classification calculations for multiple collaborators in a DataSHIELD environment. The freely accessible web interface supports convenient data upload, result review, and summary report generation. Importantly, increasing sample size as achieved through distributed access to additional datasets allows DistSNE to improve cluster analysis and enhance predictive power. Collectively, DistSNE enables a simple and fast classification of CNS tumors using large-scale methylation data from distributed sources, while maintaining the privacy and allowing easy and flexible network expansion to other institutes. This approach holds great potential for advancing human brain tumor classification and fostering collaborative precision medicine in neuro-oncology.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Humans , DNA Methylation , Central Nervous System Neoplasms/genetics , Brain Neoplasms/genetics
4.
Bioorg Med Chem Lett ; 29(16): 2428-2436, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31133531

ABSTRACT

Treatment of hepatitis C virus (HCV) infection has been historically challenging due the high viral genetic complexity wherein there are eight distinct genotypes and at least 86 viral subtypes. While HCV NS3/4A protease inhibitors are an established treatment option for genotype 1 infection, limited coverage of genotypes 2 and/or 3 combined with serum alanine transaminase (ALT) elevations for some compounds has limited the broad utility of this therapeutic class. Our discovery efforts were focused on identifying an NS3/4A protease inhibitor with pan-genotypic antiviral activity, improved coverage of resistance associated substitutions, and a decreased risk of hepatotoxicity. Towards this goal, distinct interactions with the conserved catalytic triad of the NS3/4A protease were identified that improved genotype 3 antiviral activity. We further discovered that protein adduct formation strongly correlated with clinical ALT elevation for this therapeutic class. Improving metabolic stability and decreasing protein adduct formation through structural modifications ultimately resulted in voxilaprevir. Voxilaprevir, in combination with sofosbuvir and velpatasvir, has demonstrated pan-genotypic antiviral clinical activity. Furthermore, hepatotoxicity was not observed in Phase 3 clinical trials with voxilaprevir, consistent with our design strategy. Vosevi® (sofosbuvir, velpatasvir, and voxilaprevir) is now an approved pan-genotypic treatment option for the most difficult-to-cure individuals who have previously failed direct acting antiviral therapy.


Subject(s)
Antiviral Agents/pharmacology , Carbamates/chemistry , Drug Discovery , Hepacivirus/drug effects , Heterocyclic Compounds, 4 or More Rings/chemistry , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Protease Inhibitors/pharmacology , Sofosbuvir/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Aminoisobutyric Acids , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cyclopropanes , Dose-Response Relationship, Drug , Drug Combinations , Hepacivirus/genetics , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Macrocyclic Compounds/chemical synthesis , Microbial Sensitivity Tests , Molecular Structure , Proline/analogs & derivatives , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Quinoxalines , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
5.
J Med Chem ; 61(21): 9473-9499, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30074795

ABSTRACT

Cyclophilins are a family of peptidyl-prolyl isomerases that are implicated in a wide range of diseases including hepatitis C. Our aim was to discover through total synthesis an orally bioavailable, non-immunosuppressive cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus (HCV) activity that could serve as part of an all oral antiviral combination therapy. An initial lead 2 derived from the sanglifehrin A macrocycle was optimized using structure based design to produce a potent and orally bioavailable inhibitor 3. The macrocycle ring size was reduced by one atom, and an internal hydrogen bond drove improved permeability and drug-like properties. 3 demonstrates potent Cyp inhibition ( Kd = 5 nM), potent anti-HCV 2a activity (EC50 = 98 nM), and high oral bioavailability in rat (100%) and dog (55%). The synthetic accessibility and properties of 3 support its potential as an anti-HCV agent and for interrogating the role of Cyp inhibition in a variety of diseases.


Subject(s)
Cyclophilins/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Administration, Oral , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Biological Availability , Cell Line , Cyclophilins/chemistry , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Hepacivirus/drug effects , Lactones/administration & dosage , Lactones/chemistry , Lactones/pharmacokinetics , Lactones/pharmacology , Models, Molecular , Protein Conformation , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology
6.
J Med Chem ; 60(18): 7764-7780, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28817277

ABSTRACT

We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu5 negative allosteric modulator (NAM) 7. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu5 NAMs. Increasing the sp3 character of high-throughput screening hit 40 afforded a novel morpholinopyrimidone mGlu5 NAM series. Its prototype, (R)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894, 8), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound 8 did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that 8 did not form any reactive metabolites. However, 8 caused the identical microscopic skin lesions in NHPs found with 7, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance.


Subject(s)
Allosteric Regulation/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Pyridines/pharmacology , Pyridines/pharmacokinetics , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Female , HEK293 Cells , Heterocyclic Compounds, 3-Ring/adverse effects , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Male , Molecular Docking Simulation , Pyridines/adverse effects , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 25(12): 2484-7, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25978965

ABSTRACT

Novel 4'-substituted ß-d-2'-deoxy-2'-α-fluoro (2'd2'F) nucleoside inhibitors of respiratory syncytial virus (RSV) are reported. The introduction of 4'-substitution onto 2'd2'F nucleoside analogs resulted in compounds demonstrating potent cell based RSV inhibition, improved inhibition of the RSV polymerase by the nucleoside triphosphate metabolites, and enhanced selectivity over incorporation by mitochondrial RNA and DNA polymerases. Selectivity over the mitochondrial polymerases was found to be extremely sensitive to the specific 4'-substitution and not readily predictable. Combining the most potent and selective 4'-groups from N-nucleoside analogs onto a 2'd2'F C-nucleoside analog resulted in the identification of ß-D-2'-deoxy-2'-α-fluoro-4'-α-cyano-5-aza-7,9-dideaza adenosine as a promising nucleoside lead for RSV.


Subject(s)
Adenosine/chemistry , Antiviral Agents/chemistry , DNA-Directed DNA Polymerase/chemistry , Nucleic Acid Synthesis Inhibitors/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA/chemistry , Respiratory Syncytial Viruses/enzymology , Respiratory Syncytial Viruses/physiology , Adenosine/chemical synthesis , Adenosine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Aza Compounds/chemistry , DNA-Directed DNA Polymerase/metabolism , Drug Evaluation, Preclinical , Nucleic Acid Synthesis Inhibitors/chemical synthesis , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA/metabolism , RNA, Mitochondrial , RNA-Dependent RNA Polymerase/metabolism , Respiratory Syncytial Viruses/drug effects , Structure-Activity Relationship , Virus Replication/drug effects
8.
J Med Chem ; 58(10): 4291-308, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25905800

ABSTRACT

A unique tetrahydrofuran ether class of highly potent α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiators has been identified using rational and structure-based drug design. An acyclic lead compound, containing an ether-linked isopropylsulfonamide and biphenyl group, was pharmacologically augmented by converting it to a conformationally constrained tetrahydrofuran to improve key interactions with the human GluA2 ligand-binding domain. Subsequent replacement of the distal phenyl motif with 2-cyanothiophene to enhance its potency, selectivity, and metabolic stability afforded N-{(3S,4S)-4-[4-(5-cyano-2-thienyl)phenoxy]tetrahydrofuran-3-yl}propane-2-sulfonamide (PF-04958242, 3), whose preclinical characterization suggests an adequate therapeutic index, aided by low projected human oral pharmacokinetic variability, for clinical studies exploring its ability to attenuate cognitive deficits in patients with schizophrenia.


Subject(s)
Drug Evaluation, Preclinical/methods , Receptors, AMPA/metabolism , Sulfonamides/pharmacology , Thiophenes/pharmacology , Administration, Oral , Adolescent , Adult , Aged , Animals , Binding Sites , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug Discovery , Drug Stability , Female , Humans , Male , Memory, Short-Term/drug effects , Mice, Inbred C57BL , Middle Aged , Protein Conformation , Rats, Sprague-Dawley , Schizophrenia/drug therapy , Structure-Activity Relationship , Sulfonamides/chemistry , Thiophenes/chemistry , Young Adult
9.
Bioorg Med Chem Lett ; 22(23): 7100-5, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23089526

ABSTRACT

Glucokinase activators represent a promising potential treatment for patients with Type 2 diabetes. Herein, we report the identification and optimization of a series of novel indazole and pyrazolopyridine based activators leading to the identification of 4-(6-(azetidine-1-carbonyl)-5-fluoropyridin-3-yloxy)-2-ethyl-N-(5-methylpyrazin-2-yl)-2H-indazole-6-carboxamide (42) as a potent activator with favorable preclinical pharmacokinetic properties and in vivo efficacy.


Subject(s)
Drug Design , Glucokinase/chemistry , Hypoglycemic Agents/chemical synthesis , Indazoles/chemistry , Pyrazines/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemistry , Administration, Oral , Animals , Cell Line, Tumor , Diabetes Mellitus, Type 2/drug therapy , Glucokinase/metabolism , Glucose Tolerance Test , Half-Life , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Indazoles/chemical synthesis , Indazoles/pharmacokinetics , Indazoles/therapeutic use , Insulin/metabolism , Kinetics , Protein Binding , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
10.
J Med Chem ; 55(7): 3414-24, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22420884

ABSTRACT

Replacement of the central, para-substituted fluorophenyl ring in the γ-secretase inhibitor 1 (BMS-708,163) with the bicyclo[1.1.1]pentane motif led to the discovery of compound 3, an equipotent enzyme inhibitor with significant improvements in passive permeability and aqueous solubility. The modified biopharmaceutical properties of 3 translated into excellent oral absorption characteristics (~4-fold ↑ C(max) and AUC values relative to 1) in a mouse model of γ-secretase inhibition. In addition, SAR studies into other fluorophenyl replacements indicate the intrinsic advantages of the bicyclo[1.1.1]pentane moiety over conventional phenyl ring replacements with respect to achieving an optimal balance of properties (e.g., γ-secretase inhibition, aqueous solubility/permeability, in vitro metabolic stability). Overall, this work enhances the scope of the [1.1.1]-bicycle beyond that of a mere "spacer" unit and presents a compelling case for its broader application as a phenyl group replacement in scenarios where the aromatic ring count impacts physicochemical parameters and overall drug-likeness.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Bridged Bicyclo Compounds/chemical synthesis , Oxadiazoles/chemical synthesis , Pentanes/chemical synthesis , Sulfonamides/chemical synthesis , Administration, Oral , Animals , Biological Availability , Brain/metabolism , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/pharmacology , Cell Line , Dogs , Female , Humans , Mice , Microsomes, Liver/metabolism , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Pentanes/pharmacokinetics , Pentanes/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Tissue Distribution
11.
J Med Chem ; 54(22): 7772-83, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-21995460

ABSTRACT

A metabolism-based approach toward the optimization of a series of N-arylsulfonamide-based γ-secretase inhibitors is reported. The lead cyclohexyl analogue 6 suffered from extensive oxidation on the cycloalkyl motif by cytochrome P450 3A4, translating into poor human liver microsomal stability. Knowledge of the metabolic pathways of 6 triggered a structure-activity relationship study aimed at lowering lipophilicity through the introduction of polarity. This effort led to several tetrahydropyran and tetrahydrofuran analogues, wherein the 3- and 4-substituted variants exhibited greater microsomal stability relative to their 2-substituted counterparts. Further reduction in lipophilicity led to the potent γ-secretase inhibitor and 3-substituted oxetane 1 with a reduced propensity toward oxidative metabolism, relative to its 2-substituted isomer. The slower rates of metabolism with 3-substituted cyclic ethers most likely originate from reductions in lipophilicity and/or unfavorable CYP active site interactions with the heteroatom. Preliminary animal pharmacology studies with a representative oxetane indicate that the series is generally capable of lowering Aß in vivo. As such, the study also illustrates the improvement in druglikeness of molecules through the use of the oxetane motif.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Ethers, Cyclic/chemical synthesis , Sulfonamides/chemical synthesis , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cell Line , Crystallography, X-Ray , Dogs , Drug Design , Ethers, Cyclic/metabolism , Ethers, Cyclic/pharmacology , Humans , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Oxidation-Reduction , Receptors, Notch/metabolism , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/pharmacology , Tissue Distribution
12.
Bioorg Med Chem Lett ; 21(20): 6122-5, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21908190

ABSTRACT

A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Oxazepines/chemistry , Oxazepines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Diacylglycerol O-Acyltransferase/metabolism , Drug Design , Enzyme Inhibitors/chemical synthesis , Humans , Mice , Models, Molecular , Oxazepines/chemical synthesis , Pyrimidines/chemical synthesis , Triglycerides/metabolism
13.
Drug Metab Dispos ; 37(5): 999-1008, 2009 May.
Article in English | MEDLINE | ID: mdl-19196840

ABSTRACT

Prediction of the metabolic sites for new compounds, synthesized or virtual, is important in the rational design of compounds with increased resistance to metabolism. The aim of the present investigation was to use rational design together with MetaSite, an in silico tool for predicting metabolic soft spots, to synthesize compounds that retain their pharmacological effects but are metabolically more stable in the presence of cytochrome P450 (P450) enzymes. The model compound for these studies was the phenethyl amide (1) derivative of the nonsteroidal anti-inflammatory drug (NSAID) indomethacin. Unlike the parent NSAID, 1 is a potent and selective cyclooxygenase-2 (COX-2) inhibitor and nonulcerogenic anti-inflammatory agent in the rat. This pharmacological benefit is offset by the finding that 1 is very unstable in rat and human microsomes because of extensive P4503 A4/2D6-mediated metabolism on the phenethyl group, experimental observations that were accurately predicted by MetaSite. The information was used to design analogs with polar (glycinyl) and/or electron-deficient (fluorophenyl, fluoropyridinyl) amide substituents to reduce metabolism in 1. MetaSite correctly predicted the metabolic shift from oxidation on the amide substituent to O-demethylation for these compounds, whereas rat and human microsomal stability studies and pharmacokinetic assessments in the rat confirmed that the design tactics for improving pharmacokinetic attributes of 1 had worked in our favor. In addition, the fluorophenyl and pyridinyl amide derivatives retained the potent and selective COX-2 inhibition demonstrated with 1. Overall, the predictions from MetaSite gave useful information leading to the design of new compounds with improved metabolic properties.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacokinetics , Indomethacin/analogs & derivatives , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Area Under Curve , Biotransformation , Computer Simulation , Cytochrome P-450 Enzyme System/metabolism , In Vitro Techniques , Indomethacin/pharmacokinetics , Male , Mass Spectrometry , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley , Spectrophotometry, Ultraviolet
14.
J Org Chem ; 72(6): 2058-67, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17311459

ABSTRACT

A novel approach to three different types of carbocyclic frameworks belonging to dupreziananes, sterpuranes, and polyquinanes from simple aromatic precursors has been presented. Cycloaddition of appropriately appended cyclohexa-2,4-dienones with acyclic dienes gave bridged bicyclic octanes suitably disposed with olefinic chains, which upon ring-closing metathesis led to functionalized tricyclo[5.2.2.0(1,5)]undecanes related to dupreziananes. Photochemical sigmatropic 1,2- and 1,3-acyl shifts in tricyclo[5.2.2.0(1,5)] undecanes upon triplet and singlet excitation provided stereoselective routes to sterpurane and polyquinane frameworks.

SELECTION OF CITATIONS
SEARCH DETAIL
...