Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(23): 23772-23783, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38038709

ABSTRACT

There is currently no plausible path for the emergence of a self-replicating protocell, because prevalent formulations of model protocells are built with fatty acid vesicles that cannot withstand the concentrations of Mg2+ needed for the function and replication of nucleic acids. Although prebiotic chelates increase the survivability of fatty acid vesicles, the resulting model protocells are incapable of growth and division. Here, we show that protocells made of mixtures of cyclophospholipids and fatty acids can grow and divide in the presence of Mg2+-citrate. Importantly, these protocells retain encapsulated nucleic acids during growth and division, can acquire nucleotides from their surroundings, and are compatible with the nonenzymatic extension of an RNA oligonucleotide, chemistry needed for the replication of a primitive genome. Our work shows that prebiotically plausible mixtures of lipids form protocells that are active under the conditions necessary for the emergence of Darwinian evolution.


Subject(s)
Artificial Cells , Nucleic Acids , RNA , Fatty Acids , Citrates
2.
J Chromatogr A ; 1630: 461509, 2020 Aug 23.
Article in English | MEDLINE | ID: mdl-32927393

ABSTRACT

In the origins of life field understanding the abiotic polymerization of simple organic monomers (e.g., amino acids) into larger biomolecules (e.g., oligopeptides), remains a seminal challenge. Recently, preliminary observations showed a limited set of peptides formed in the presence of the plausible prebiotic phosphorylating agent, diamidophosphate (DAP), highlighting the need for an analytical tool to critically evaluate the ability of DAP to induce oligomerization of simple organics under aqueous conditions. However, performing accurate and precise, targeted analyses of short oligopeptides remains a distinct challenge in the analytical chemistry field. Here, we developed a new technique to detect and quantitate amino acids and their homopeptides in a single run using ultraperformance liquid chromatography-fluorescence detection/time of flight mass spectrometry. Over an 8-minute retention time window, 18 target analytes were identified and quantitated, 16 of which were chromatographically separated at, or near baseline resolution. Compound identity was confirmed by accurate mass analysis using a 10 ppm mass tolerance window. This method featured limits of detection < 5 nM (< 1 fmol on column) and limits of quantitation (LOQs) <15 nM (< 3 fmol on column). The LODs and LOQs were upwards of ∼28x and ∼788x lower, respectively, than previous methods for the same analytes, highlighting the quantifiable advantages of this new method. Both detectors provided good quantitative linearity (R2 > 0.985) for all analytes spanning concentration ranges ∼3 - 4 orders of magnitude. We performed a series of laboratory experiments to investigate DAP-mediated oligomerization of amino acids and peptides and analyzed experimental products with the new method. DAP readily polymerized amino acids and peptides under a range of simulated environmental conditions. This research underscores the potential of DAP to have generated oligopeptides on the primordial Earth, enhancing prebiotic chemical diversity and complexity at or near the origin of life.

3.
Small ; 16(27): e1903381, 2020 07.
Article in English | MEDLINE | ID: mdl-31523894

ABSTRACT

Model protocells have long been constructed with fatty acids, because these lipids are prebiotically plausible and can, at least theoretically, support a protocell life cycle. However, fatty acid protocells are stable only within a narrow range of pH and metal ion concentration. This instability is particularly problematic as the early Earth would have had a range of conditions, and extant life is completely reliant on metal ions for catalysis and the folding and activity of biological polymers. Here, prebiotically plausible monoacyl cyclophospholipids are shown to form robust vesicles that survive a broad range of pH and high concentrations of Mg2+ , Ca2+ , and Na+ . Importantly, stability to Mg2+ and Ca2+ is improved by the presence of environmental concentrations of Na+ . These results suggest that cyclophospholipids, or lipids with similar characteristics, may have played a central role during the emergence of Darwinian evolution.


Subject(s)
Artificial Cells , Ions , Metals , Phospholipids , Artificial Cells/drug effects , Catalysis , Fatty Acids/chemistry , Ions/chemistry , Metals/chemistry , Phospholipids/pharmacology
4.
Nat Chem ; 10(2): 212-217, 2018 02.
Article in English | MEDLINE | ID: mdl-29359747

ABSTRACT

Prebiotic phosphorylation of (pre)biological substrates under aqueous conditions is a critical step in the origins of life. Previous investigations have had limited success and/or require unique environments that are incompatible with subsequent generation of the corresponding oligomers or higher-order structures. Here, we demonstrate that diamidophosphate (DAP)-a plausible prebiotic agent produced from trimetaphosphate-efficiently (amido)phosphorylates a wide variety of (pre)biological building blocks (nucleosides/tides, amino acids and lipid precursors) under aqueous (solution/paste) conditions, without the need for a condensing agent. Significantly, higher-order structures (oligonucleotides, peptides and liposomes) are formed under the same phosphorylation reaction conditions. This plausible prebiotic phosphorylation process under similar reaction conditions could enable the systems chemistry of the three classes of (pre)biologically relevant molecules and their oligomers, in a single-pot aqueous environment.


Subject(s)
Evolution, Chemical , Origin of Life , Phosphorus Compounds/chemistry , Phosphorus Compounds/chemical synthesis , Water/chemistry , Phosphorylation
5.
Life (Basel) ; 7(3)2017 Jul 29.
Article in English | MEDLINE | ID: mdl-28758921

ABSTRACT

Phosphorylation under plausible prebiotic conditions continues to be one of the defining issues for the role of phosphorus in the origins of life processes. In this review, we cover the reactions of alternative forms of phosphate, specifically the nitrogenous versions of phosphate (and other forms of reduced phosphorus species) from a prebiotic, synthetic organic and biochemistry perspective. The ease with which such amidophosphates or phosphoramidate derivatives phosphorylate a wide variety of substrates suggests that alternative forms of phosphate could have played a role in overcoming the "phosphorylation in water problem". We submit that serious consideration should be given to the search for primordial sources of nitrogenous versions of phosphate and other versions of phosphorus.

6.
J Org Chem ; 80(7): 3701-7, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25738925

ABSTRACT

A simple and inexpensive methodology is reported for the conversion of alkenes to 1,2-dibromo alkanes via oxidative bromination using HBr paired with dimethyl sulfoxide, which serves as the oxidant as well as cosolvent. The substrate scope includes 21 olefins brominated in good to excellent yields. Three of six styrene derivatives yielded bromohydrins under the reaction conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...