Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Kidney Int Rep ; 8(7): 1332-1341, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37441479

ABSTRACT

Introduction: Atypical hemolytic uremic syndrome (aHUS) is a rare, progressive, and life-threatening form of thrombotic microangiopathy (TMA) which is caused by dysregulation of the alternative complement pathway (AP). Complement inhibition is an effective therapeutic strategy in aHUS, though current therapies require intravenous administration and increase the risk of infection by encapsulated organisms, including meningococcal infection. Further studies are required to define the optimal duration of existing therapies, and to identify new agents that are convenient for long-term administration. Iptacopan (LNP023) is an oral, first-in-class, highly potent, proximal AP inhibitor that specifically binds factor B (FB). In phase 2 studies of IgA nephropathy, paroxysmal nocturnal hemoglobinuria, and C3 glomerulopathy, iptacopan inhibited the AP, showed clinically relevant benefits, and was well tolerated. Iptacopan thus has the potential to become an effective and safe treatment for aHUS, with the convenience of oral administration. Methods: Alternative Pathway Phase III to Evaluate LNP023 in aHUS (APPELHUS; NCT04889430) is a multicenter, single-arm, open-label, phase 3 study to evaluate the efficacy and safety of iptacopan in patients (N = 50) with primary complement-mediated aHUS naïve to complement inhibitor therapy (including anti-C5). Eligible patients must have evidence of TMA (platelet count <150 × 109/l, lactate dehydrogenase ≥1.5 × upper limit of normal, hemoglobin ≤ lower limit of normal, serum creatinine ≥ upper limit of normal) and will receive iptacopan 200 mg twice daily. The primary objective is to assess the proportion of patients achieving complete TMA response without the use of plasma exchange or infusion or anti-C5 antibody during 26 weeks of iptacopan treatment. Conclusion: APPELHUS will determine if iptacopan is safe and efficacious in patients with aHUS.

2.
J Med Chem ; 66(13): 9095-9119, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37399505

ABSTRACT

The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor (1) that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the Tsc1 gene. However, 1 showed the risk of genotoxicity in vitro. Through structure-activity relationship (SAR) optimization, we identified compounds 9 and 11 without genotoxicity risk. In neuronal cell-based models of mTOR hyperactivity, both corrected aberrant mTOR activity and significantly improved the survival rate of mice in the Tsc1 gene knockout model. Unfortunately, 9 and 11 showed limited oral exposures in higher species and dose-limiting toxicities in cynomolgus macaque, respectively. However, they remain optimal tools to explore mTOR hyperactivity in CNS disease models.


Subject(s)
MTOR Inhibitors , Sirolimus , Mice , Animals , Syndrome , Central Nervous System/metabolism , Brain/metabolism , TOR Serine-Threonine Kinases , Adenosine Triphosphate
3.
J Med Chem ; 63(15): 8088-8113, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32551603

ABSTRACT

The serine protease factor XI (FXI) is a prominent drug target as it holds promise to deliver efficacious anticoagulation without an enhanced risk of major bleeds. Several efforts have been described targeting the active form of the enzyme, FXIa. Herein, we disclose our efforts to identify potent, selective, and orally bioavailable inhibitors of FXIa. Compound 1, identified from a diverse library of internal serine protease inhibitors, was originally designed as a complement factor D inhibitor and exhibited submicromolar FXIa activity and an encouraging absorption, distribution, metabolism, and excretion (ADME) profile while being devoid of a peptidomimetic architecture. Optimization of interactions in the S1, S1ß, and S1' pockets of FXIa through a combination of structure-based drug design and traditional medicinal chemistry led to the discovery of compound 23 with subnanomolar potency on FXIa, enhanced selectivity over other coagulation proteases, and a preclinical pharmacokinetics (PK) profile consistent with bid dosing in patients.


Subject(s)
Factor XIa/antagonists & inhibitors , Factor XIa/genetics , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/chemistry , Administration, Oral , Amino Acid Sequence , Animals , Biological Availability , Dogs , Drug Evaluation, Preclinical/methods , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
ACS Med Chem Lett ; 11(2): 188-194, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32071687

ABSTRACT

Inhibition of neprilysin (NEP) is widely studied as a therapeutic target for the treatment of hypertension, heart failure, and kidney disease. Sacubitril/valsartan (LCZ696) is a drug approved to reduce the risk of cardiovascular death in heart failure patients with reduced ejection fraction. LBQ657 is the active metabolite of sacubitril and an inhibitor of NEP. Previously, we have reported the crystal structure of NEP bound with LBQ657, whereby we noted the presence of a subsite in S1' that has not been explored before. We were also intrigued by the zinc coordination made by one of the carboxylic acids of LBQ657, leading us to explore alternative linkers to efficiently engage zinc for NEP inhibition. Structure-guided design culminated in the synthesis of selective, orally bioavailable, and subnanomolar inhibitors of NEP. A 17-fold boost in biochemical potency was observed upon addition of a chlorine atom that occupied the newly found subsite in S1'. We report herein the discovery and preclinical profiling of compound 13, which paved the path to our clinical candidate.

5.
J Med Chem ; 63(11): 5697-5722, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32073845

ABSTRACT

The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several human diseases including age-related macular degeneration, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and various glomerular diseases. The serine protease factor B (FB) is a key node in the AP and is integral to the formation of C3 and C5 convertase. Despite the prominent role of FB in the AP, selective orally bioavailable inhibitors, beyond our own efforts, have not been reported previously. Herein we describe in more detail our efforts to identify FB inhibitors by high-throughput screening (HTS) and leveraging insights from several X-ray cocrystal structures during optimization efforts. This work culminated in the discovery of LNP023 (41), which is currently being evaluated clinically in several diverse AP mediated indications.


Subject(s)
Benzoic Acid/chemistry , Complement Factor B/antagonists & inhibitors , Indoles/chemistry , Atypical Hemolytic Uremic Syndrome/metabolism , Atypical Hemolytic Uremic Syndrome/pathology , Benzoic Acid/metabolism , Benzoic Acid/pharmacokinetics , Binding Sites , Catalytic Domain , Complement Factor B/metabolism , Crystallography, X-Ray , Drug Evaluation, Preclinical , Half-Life , Humans , Indoles/metabolism , Indoles/pharmacokinetics , Inhibitory Concentration 50 , Macular Degeneration/metabolism , Macular Degeneration/pathology , Molecular Dynamics Simulation , Structure-Activity Relationship
6.
J Med Chem ; 63(3): 1068-1083, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31955578

ABSTRACT

Recent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule 7, a potent and selective brain-penetrant ATP-competitive mTOR inhibitor. In neuronal cell-based models of mTOR hyperactivity, 7 corrected the mTOR pathway activity and the resulting neuronal overgrowth phenotype. The new mTOR inhibitor 7 showed good brain exposure and significantly improved the survival rate of mice with neuronal-specific ablation of the Tsc1 gene. These results demonstrate the potential utility of this tool compound to test therapeutic hypotheses that depend on mTOR hyperactivity in the CNS.


Subject(s)
Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Seizures/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/therapeutic use , Animals , Anticonvulsants/metabolism , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Binding Sites , Brain/drug effects , Drug Discovery , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/metabolism , Thiazoles/metabolism , Thiazoles/pharmacokinetics , Tuberous Sclerosis Complex 1 Protein/genetics
8.
Nat Chem Biol ; 16(1): 15-23, 2020 01.
Article in English | MEDLINE | ID: mdl-31819272

ABSTRACT

The anticancer agent indisulam inhibits cell proliferation by causing degradation of RBM39, an essential mRNA splicing factor. Indisulam promotes an interaction between RBM39 and the DCAF15 E3 ligase substrate receptor, leading to RBM39 ubiquitination and proteasome-mediated degradation. To delineate the precise mechanism by which indisulam mediates the DCAF15-RBM39 interaction, we solved the DCAF15-DDB1-DDA1-indisulam-RBM39(RRM2) complex structure to a resolution of 2.3 Å. DCAF15 has a distinct topology that embraces the RBM39(RRM2) domain largely via non-polar interactions, and indisulam binds between DCAF15 and RBM39(RRM2), coordinating additional interactions between the two proteins. Studies with RBM39 point mutants and indisulam analogs validated the structural model and defined the RBM39 α-helical degron motif. The degron is found only in RBM23 and RBM39, and only these proteins were detectably downregulated in indisulam-treated HCT116 cells. This work further explains how indisulam induces RBM39 degradation and defines the challenge of harnessing DCAF15 to degrade additional targets.


Subject(s)
Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/chemistry , RNA-Binding Proteins/chemistry , Sulfonamides/pharmacology , Amino Acid Motifs , Calorimetry , Cloning, Molecular , Fluorometry , HCT116 Cells , HEK293 Cells , Humans , Image Processing, Computer-Assisted , Intracellular Signaling Peptides and Proteins/genetics , Kinetics , Nuclear Proteins/metabolism , Peptides/chemistry , Point Mutation , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary , Proteome , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism
9.
J Med Chem ; 62(9): 4656-4668, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30995036

ABSTRACT

Complement factor D (FD), a highly specific S1 serine protease, plays a central role in the amplification of the alternative complement pathway (AP) of the innate immune system. Dysregulation of AP activity predisposes individuals to diverse disorders such as age-related macular degeneration, atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis type II, and paroxysmal nocturnal hemoglobinuria. Previously, we have reported the screening efforts and identification of reversible benzylamine-based FD inhibitors (1 and 2) binding to the open active conformation of FD. In continuation of our drug discovery program, we designed compounds applying structure-based approaches to improve interactions with FD and gain selectivity against S1 serine proteases. We report herein the design, synthesis, and medicinal chemistry optimization of the benzylamine series culminating in the discovery of 12, an orally bioavailable and selective FD inhibitor. 12 demonstrated systemic suppression of AP activation in a lipopolysaccharide-induced AP activation model as well as local ocular suppression in intravitreal injection-induced AP activation model in mice expressing human FD.


Subject(s)
Benzylamines/pharmacology , Complement Pathway, Alternative/drug effects , Serine Proteinase Inhibitors/pharmacology , Animals , Benzylamines/chemical synthesis , Benzylamines/metabolism , Binding Sites , Complement Factor D/antagonists & inhibitors , Complement Factor D/chemistry , Complement Factor D/metabolism , Dogs , Drug Design , Humans , Mice, Inbred C57BL , Mice, Transgenic , Molecular Docking Simulation , Protein Conformation , Rats , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/metabolism
10.
Proc Natl Acad Sci U S A ; 116(16): 7926-7931, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30926668

ABSTRACT

Dysregulation of the alternative complement pathway (AP) predisposes individuals to a number of diseases including paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and C3 glomerulopathy. Moreover, glomerular Ig deposits can lead to complement-driven nephropathies. Here we describe the discovery of a highly potent, reversible, and selective small-molecule inhibitor of factor B, a serine protease that drives the central amplification loop of the AP. Oral administration of the inhibitor prevents KRN-induced arthritis in mice and is effective upon prophylactic and therapeutic dosing in an experimental model of membranous nephropathy in rats. In addition, inhibition of factor B prevents complement activation in sera from C3 glomerulopathy patients and the hemolysis of human PNH erythrocytes. These data demonstrate the potential therapeutic value of using a factor B inhibitor for systemic treatment of complement-mediated diseases and provide a basis for its clinical development.


Subject(s)
Complement Factor B/antagonists & inhibitors , Complement Pathway, Alternative/drug effects , Drug Discovery/methods , Immunologic Factors/pharmacology , Animals , Disease Models, Animal , Glomerulonephritis, Membranous/physiopathology , Humans , Male , Mice , Mice, Inbred C57BL , Rats, Sprague-Dawley
11.
J Med Chem ; 61(22): 10155-10172, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30339381

ABSTRACT

SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 2 (SMARCA2), also known as Brahma homologue (BRM), is a Snf2-family DNA-dependent ATPase. BRM and its close homologue Brahma-related gene 1 (BRG1), also known as SMARCA4, are mutually exclusive ATPases of the large ATP-dependent SWI/SNF chromatin-remodeling complexes involved in transcriptional regulation of gene expression. No small molecules have been reported that modulate SWI/SNF chromatin-remodeling activity via inhibition of its ATPase activity, an important goal given the well-established dependence of BRG1-deficient cancers on BRM. Here, we describe allosteric dual BRM and BRG1 inhibitors that downregulate BRM-dependent gene expression and show antiproliferative activity in a BRG1-mutant-lung-tumor xenograft model upon oral administration. These compounds represent useful tools for understanding the functions of BRM in BRG1-loss-of-function settings and should enable probing the role of SWI/SNF functions more broadly in different cancer contexts and those of other diseases.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , DNA Helicases/genetics , Drug Design , Mutation , Nuclear Proteins/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Transcription Factors/chemistry , Xenograft Model Antitumor Assays
12.
ChemMedChem ; 12(5): 358-361, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28181424

ABSTRACT

The first examples of biologically active monocyclic 1,2-azaborines have been synthesized and demonstrated to exhibit not only improved in vitro aqueous solubility in comparison with their corresponding carbonaceous analogues, but in the context of a CDK2 inhibitor, also improved biological activity and better in vivo oral bioavailability. This proof-of-concept study establishes the viability of monocyclic 1,2-azaborines as a novel pharmacophore with distinct pharmacological profiles that can help address challenges associated with solubility in drug development research.


Subject(s)
Boron Compounds/chemistry , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Administration, Oral , Animals , Binding Sites , Boron Compounds/metabolism , Boron Compounds/pharmacokinetics , Chemistry, Pharmaceutical , Cyclin-Dependent Kinase 2/metabolism , Half-Life , Hydrogen Bonding , Male , Molecular Dynamics Simulation , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Solubility
13.
Sci Rep ; 6: 27909, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27302413

ABSTRACT

Sacubitril is an ethyl ester prodrug of LBQ657, the active neprilysin (NEP) inhibitor, and a component of LCZ696 (sacubitril/valsartan). We report herein the three-dimensional structure of LBQ657 in complex with human NEP at 2 Å resolution. The crystal structure unravels the binding mode of the compound occupying the S1, S1' and S2' sub-pockets of the active site, consistent with a competitive inhibition mode. An induced fit conformational change upon binding of the P1'-biphenyl moiety of the inhibitor suggests an explanation for its selectivity against structurally homologous zinc metallopeptidases.


Subject(s)
Aminobutyrates/chemistry , Biphenyl Compounds/chemistry , Neprilysin/chemistry , Neprilysin/metabolism , Aminobutyrates/metabolism , Biphenyl Compounds/metabolism , Catalytic Domain , Crystallography, X-Ray , Drug Combinations , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Hydrogen Bonding , Models, Molecular , Neprilysin/antagonists & inhibitors , Protein Domains , Tetrazoles/metabolism , Valsartan
15.
J Chem Inf Model ; 52(3): 739-56, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22303903

ABSTRACT

We present here a greatly updated version of an earlier study on the conformational energies of protein-ligand complexes in the Protein Data Bank (PDB) [Nicklaus et al. Bioorg. Med. Chem. 1995, 3, 411-428], with the goal of improving on all possible aspects such as number and selection of ligand instances, energy calculations performed, and additional analyses conducted. Starting from about 357,000 ligand instances deposited in the 2008 version of the Ligand Expo database of the experimental 3D coordinates of all small-molecule instances in the PDB, we created a "high-quality" subset of ligand instances by various filtering steps including application of crystallographic quality criteria and structural unambiguousness. Submission of 640 Gaussian 03 jobs yielded a set of about 415 successfully concluded runs. We used a stepwise optimization of internal degrees of freedom at the DFT level of theory with the B3LYP/6-31G(d) basis set and a single-point energy calculation at B3LYP/6-311++G(3df,2p) after each round of (partial) optimization to separate energy changes due to bond length stretches vs bond angle changes vs torsion changes. Even for the most "conservative" choice of all the possible conformational energies-the energy difference between the conformation in which all internal degrees of freedom except torsions have been optimized and the fully optimized conformer-significant energy values were found. The range of 0 to ~25 kcal/mol was populated quite evenly and independently of the crystallographic resolution. A smaller number of "outliers" of yet higher energies were seen only at resolutions above 1.3 Å. The energies showed some correlation with molecular size and flexibility but not with crystallographic quality metrics such as the Cruickshank diffraction-component precision index (DPI) and R(free)-R, or with the ligand instance-specific metrics such as occupancy-weighted B-factor (OWAB), real-space R factor (RSR), and real-space correlation coefficient (RSCC). We repeated these calculations with the solvent model IEFPCM, which yielded energy differences that were generally somewhat lower than the corresponding vacuum results but did not produce a qualitatively different picture. Torsional sampling around the crystal conformation at the molecular mechanics level using the MMFF94s force field typically led to an increase in energy.


Subject(s)
Databases, Protein , Molecular Conformation , Quantum Theory , Crystallography, X-Ray , Ligands , Models, Molecular , Solvents/chemistry , Thermodynamics
16.
J Am Chem Soc ; 130(28): 9048-57, 2008 Jul 16.
Article in English | MEDLINE | ID: mdl-18558684

ABSTRACT

The conformations of three 2',3'-difluoro uridine nucleosides were studied by X-ray crystallography, NMR spectroscopy, and ab initio calculations in an attempt to define the roles that the two vicinal fluorine atoms play in the puckering preferences of the furanose ring. Two of the compounds examined contained fluorine atoms in either the arabino or xylo dispositions at C2' and C3' of a 2',3'-dideoxyuridine system. The third compound also incorporated fluorine atoms in the xylo configuration on the furanose ring but was substituted with a 6-azauracil base in place of uracil. A battery of NMR experiments in D 2O solution was used to identify conformational preferences primarily from coupling constant and NOE data. Both (1)H and (19)F NMR data were used to ascertain the preferred sugar pucker of the furanose ring through the use of the program PSEUROT. Compound-dependent parameters used in the PSEUROT calculations were newly derived from complete sets of conformations calculated from high-level ab initio methods. The solution and theoretical data were compared to the conformations of each molecule in the solid state. It was shown that both gauche and antiperiplanar effects may be operative to maintain a pseudodiaxial arrangement of the C2' and C3' vicinal fluorine atoms. These data, along with previously reported data by us and others concerning monofluorinated nucleoside conformations, were used to propose a model of how fluorine influences different aspects of nucleoside conformations.


Subject(s)
Uridine/analogs & derivatives , Crystallography, X-Ray , Deoxyuridine/chemistry , Fluorine/chemistry , Fourier Analysis , Hydrocarbons, Fluorinated/chemistry , Molecular Conformation , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pyrimidine Nucleosides/chemistry , Uracil/analogs & derivatives , Uracil/chemistry , Uridine/chemistry
17.
Bioorg Med Chem Lett ; 17(19): 5361-5, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17719223

ABSTRACT

To address the absence of experimental data on the full-length structure of HIV-1 integrase and the way it binds to viral and human DNA, we had previously [Karki, R. G.; Tang, Y.; Burke, T. R., Jr.; Nicklaus, M. C. J. Comput. Aided Mol. Des.2004, 18, 739] constructed models of full-length HIV-1 integrase complexed with models of viral and human DNA. Here we describe the discovery of novel HIV-1 integrase strand transfer inhibitors based on one of these models. Virtual screening methods including docking and filtering by predicted ADME/Tox properties yielded several microM level inhibitors of the strand transfer reaction catalyzed by wild-type HIV-1 integrase.


Subject(s)
DNA, Viral/chemistry , HIV Integrase Inhibitors/chemistry , HIV Integrase/chemistry , Catalysis , Drug Evaluation, Preclinical , HIV Integrase Inhibitors/metabolism , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Humans , Models, Molecular , Structure-Activity Relationship
18.
J Med Chem ; 50(8): 1978-82, 2007 Apr 19.
Article in English | MEDLINE | ID: mdl-17371004

ABSTRACT

A 4-aminopiperidine-4-carboxylic acid residue was placed in the pTyr+1 position of a Grb2 SH2 domain-binding peptide to form a general platform, which was then acylated with a variety of groups to yield a library of compounds designed to explore potential binding interactions, with protein features lying below the betaD strand. The highest affinities were obtained using phenylethyl carbamate and phenylbutyrylamide functionalities.


Subject(s)
GRB2 Adaptor Protein/chemistry , Oligopeptides/chemistry , Phosphotyrosine/chemistry , Piperidines/chemical synthesis , src Homology Domains , Acylation , Binding Sites , Models, Molecular , Molecular Conformation , Piperidines/chemistry
19.
Bioorg Med Chem Lett ; 16(20): 5265-9, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-16908148

ABSTRACT

Copper (I) promoted [3+2] Huisgen cycloaddition of azides with terminal alkynes was used to prepare triazole-containing macrocycles based on the Grb2 SH2 domain-binding motif, 'Pmp-Ac(6)c-Asn', where Pmp and Ac(6)c stand for 4-phosphonomethylphenylalanine and 1-aminocyclohexanecarboxylic acid, respectively. When cycloaddition reactions were conducted at 1mM substrate concentrations, cyclization of monomeric units occurred. At 2mM substrate concentrations the predominant products were macrocyclic dimers. In Grb2 SH2 domain-binding assays the monomeric (S)-Pmp-containing macrocycle exhibited a K(d) value of 0.23microM, while the corresponding dimeric macrocycle was found to have greater than 50-fold higher affinity. The open-chain dimer was also found to have affinity equal to the dimeric macrocycle. This work represents the first application of 'click chemistry' to the synthesis of SH2 domain-binding inhibitors and indicates its potential utility.


Subject(s)
Alkynes/chemistry , Azides/chemical synthesis , GRB2 Adaptor Protein/chemistry , Macrocyclic Compounds/chemical synthesis , src Homology Domains , Azides/chemistry , Binding Sites , Copper/chemistry , Cyclization , GRB2 Adaptor Protein/drug effects , Ligands , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Models, Molecular , Molecular Conformation , Protein Conformation , Sensitivity and Specificity , Stereoisomerism , Structure-Activity Relationship , Surface Plasmon Resonance , Time Factors , Triazoles/chemistry , src Homology Domains/drug effects
20.
Bioorg Med Chem ; 13(7): 2431-8, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15755645

ABSTRACT

Preferential binding of ligands to Grb2 SH2 domains in beta-bend conformations has made peptide cyclization a logical means of effecting affinity enhancement. This is based on the concept that constraint of open-chain sequences to bend geometries may reduce entropy penalties of binding. The current study extends this approach by undertaking ring-closing metathesis (RCM) macrocyclization between i and i+3 residues through a process involving allylglycines and beta-vinyl-functionalized residues. Ring closure in this fashion results in minimal macrocyclic tetrapeptide mimetics. The predominant effects of such macrocyclization on Grb2 SH2 domain binding affinity were increases in rates of association (from 7- to 16-fold) relative to an open-chain congener, while decreases in dissociation rates were less pronounced (approximately 2-fold). The significant increases in association rates were consistent with pre-ordering of solution conformations to near those required for binding. Data from NMR experiments and molecular modeling simulations were used to interpret the binding results. An understanding of the conformational consequences of such i to i+3 ring closure may facilitate its application to other systems where bend geometries are desired.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Allylglycine/chemistry , Macrocyclic Compounds/chemistry , Molecular Mimicry , Peptides/chemical synthesis , Phosphotyrosine/chemistry , Cyclization , GRB2 Adaptor Protein , Macrocyclic Compounds/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Peptides/chemistry , Protein Structure, Tertiary , Stereoisomerism , Structure-Activity Relationship , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...