Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 106(1-1): 014107, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974518

ABSTRACT

The rich ground-state phase diagram of the mixed spin-(1,1/2) Heisenberg octahedral chain was previously elaborated from effective mixed-spin Heisenberg chains, which were derived by employing a local conservation of a total spin on square plaquettes of an octahedral chain. Here we present a comprehensive analysis of the thermodynamic properties of this model. In the highly frustrated parameter region the lowest-energy eigenstates of the mixed-spin Heisenberg octahedral chain belong to flat bands, which allow a precise description of low-temperature magnetic properties within the localized-magnon approach exploiting a classical lattice-gas model of hard-core monomers. The present article provides a more comprehensive version of the localized-magnon approach, which extends the range of its validity down to a less frustrated parameter region involving the Haldane and cluster-based Haldane ground states. A comparison between results of the developed localized-magnon theory and accurate numerical methods such as full exact diagonalization and finite-temperature Lanczos technique convincingly evidence that the low-temperature magnetic properties above the Haldane and the cluster-based Haldane ground states can be extracted from a classical lattice-gas model of hard-core monomers and dimers, which is additionally supplemented by a hard-core particle spanned over the whole lattice representing the gapped Haldane phase.

2.
Entropy (Basel) ; 23(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34828231

ABSTRACT

The magnetocaloric response of the mixed spin-1/2 and spin-S (S>1/2) Ising model on a decorated square lattice is thoroughly examined in presence of the transverse magnetic field within the generalized decoration-iteration transformation, which provides an exact mapping relation with an effective spin-1/2 Ising model on a square lattice in a zero magnetic field. Temperature dependencies of the entropy and isothermal entropy change exhibit an outstanding singular behavior in a close neighborhood of temperature-driven continuous phase transitions, which can be additionally tuned by the applied transverse magnetic field. While temperature variations of the entropy display in proximity of the critical temperature Tc a striking energy-type singularity (T-Tc)log|T-Tc|, two analogous weak singularities can be encountered in the temperature dependence of the isothermal entropy change. The basic magnetocaloric measurement of the isothermal entropy change may accordingly afford the smoking gun evidence of continuous phase transitions. It is shown that the investigated model predominantly displays the conventional magnetocaloric effect with exception of a small range of moderate temperatures, which contrarily promotes the inverse magnetocaloric effect. It turns out that the temperature range inherent to the inverse magnetocaloric effect is gradually suppressed upon increasing of the spin magnitude S.

3.
Phys Rev E ; 100(4-1): 042127, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31770992

ABSTRACT

The spin-1/2 Ising-Heisenberg branched chain composed of regularly alternating Ising spins and Heisenberg dimers involving an additional side branching is rigorously solved in a magnetic field by the transfer-matrix approach. The ground-state phase diagram, the magnetization process and the concurrence measuring a degree of bipartite entanglement within the Heisenberg dimers are examined in detail. Three different ground states were found depending on a mutual interplay between the magnetic field and two different coupling constants: the modulated quantum antiferromagnetic phase, the quantum ferrimagnetic phase, and the classical ferromagnetic phase. Two former quantum ground states are manifested in zero-temperature magnetization curves as intermediate plateaus at zero and one-half of the saturation magnetization, whereas the one-half plateau disappears at a triple point induced by a strong-enough ferromagnetic Ising coupling. The ground-state phase diagram and zero-temperature magnetization curves of the analogous spin-1/2 Heisenberg branched chain were investigated using density-matrix renormalization group calculations. The latter fully quantum Heisenberg model involves, besides two gapful phases manifested as zero and one-half magnetization plateaus, gapless quantum spin-liquid phase. The intermediate one-half plateau of the spin-1/2 Heisenberg branched chain vanishes at Kosterlitz-Thouless quantum critical point between gapful and gapless quantum ground states unlike the triple point of the spin-1/2 Ising-Heisenberg branched chain.

SELECTION OF CITATIONS
SEARCH DETAIL
...