Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Intern Med ; 32(5): 1768-1772, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30216546

ABSTRACT

The case of atypical myopathy (AM) in newborn Haflinger foal with clinical signs of depression and weakness appearing 6 hours after birth resulting in recumbency 12 hours after birth is described. The foal's dam was diagnosed with AM in the 6th month of gestation based on clinical signs of a myopathy, elevated serum activity of creatine kinase, metabolomic analysis and the presence of methylenecyclopropyl acetyl carnitine (MCPA-carnitine) in the blood. At the time of delivery, the mare was grazing on a pasture near sycamore trees but was free of clinical signs of AM. Metabolomic analysis of the foal's blood revealed increased concentrations of acylcarnitines and MCPA-carnitine consistent with metabolic profiles of blood from AM affected horses. Two theories could explain this observation (a) hypoglycin A or its metabolites accumulated in the mare's placenta with consequent transfer to fetus or (b) these compounds were secreted into mare's milk.


Subject(s)
Animals, Newborn , Carnitine/analogs & derivatives , Horse Diseases/pathology , Muscular Diseases/veterinary , Animals , Carnitine/blood , Genetic Predisposition to Disease , Horse Diseases/diagnosis , Horses , Muscular Diseases/diagnosis
2.
PLoS One ; 13(7): e0199349, 2018.
Article in English | MEDLINE | ID: mdl-30001349

ABSTRACT

Current anti-cancer strategy takes advantage of tumour specific abnormalities in DNA damage response to radio- or chemo-therapy. Inhibition of the ATR/Chk1 pathway has been shown to be synthetically lethal in cells with high levels of oncogene-induced replication stress and in p53- or ATM- deficient cells. In the presented study, we aimed to elucidate molecular mechanisms underlying radiosensitization of T-lymphocyte leukemic MOLT-4 cells by VE-821, a higly potent and specific inhibitor of ATR. We combined multiple approaches: cell biology techniques to reveal the inhibitor-induced phenotypes, and quantitative proteomics, phosphoproteomics, and metabolomics to comprehensively describe drug-induced changes in irradiated cells. VE-821 radiosensitized MOLT-4 cells, and furthermore 10 µM VE-821 significantly affected proliferation of sham-irradiated MOLT-4 cells. We detected 623 differentially regulated phosphorylation sites. We revealed changes not only in DDR-related pathways and kinases, but also in pathways and kinases involved in maintaining cellular metabolism. Notably, we found downregulation of mTOR, the main regulator of cellular metabolism, which was most likely caused by an off-target effect of the inhibitor, and we propose that mTOR inhibition could be one of the factors contributing to the phenotype observed after treating MOLT-4 cells with 10 µM VE-821. In the metabolomic analysis, 206 intermediary metabolites were detected. The data indicated that VE-821 potentiated metabolic disruption induced by irradiation and affected the response to irradiation-induced oxidative stress. Upon irradiation, recovery of damaged deoxynucleotides might be affected by VE-821, hampering DNA repair by their deficiency. Taken together, this is the first study describing a complex scenario of cellular events that might be ATR-dependent or triggered by ATR inhibition in irradiated MOLT-4 cells. Data are available via ProteomeXchange with identifier PXD008925.


Subject(s)
Metabolome , Phosphoproteins , Proteome , Pyrazines/pharmacology , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Sulfones/pharmacology , Amino Acid Motifs , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Binding Sites , Biomarkers , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/radiation effects , Cell Line, Tumor , Computational Biology/methods , Gamma Rays , Gene Ontology , Humans , Metabolomics/methods , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
3.
J Inherit Metab Dis ; 41(3): 407-414, 2018 05.
Article in English | MEDLINE | ID: mdl-29139026

ABSTRACT

Specific diagnostic markers are the key to effective diagnosis and treatment of inborn errors of metabolism (IEM). Untargeted metabolomics allows for the identification of potential novel diagnostic biomarkers. Current separation techniques coupled to high-resolution mass spectrometry provide a powerful tool for structural elucidation of unknown compounds in complex biological matrices. This is a proof-of-concept study testing this methodology to determine the molecular structure of as yet uncharacterized m/z signals that were significantly increased in plasma samples from patients with phenylketonuria and 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. A hybrid linear ion trap-orbitrap high resolution mass spectrometer, capable of multistage fragmentation, was used to acquire accurate masses and product ion spectra of the uncharacterized m/z signals. In order to determine the molecular structures, spectral databases were searched and fragmentation prediction software was used. This approach enabled structural elucidation of novel compounds potentially useful as biomarkers in diagnostics and follow-up of IEM patients. Two new conjugates, glutamyl-glutamyl-phenylalanine and phenylalanine-hexose, were identified in plasma of phenylketonuria patients. These novel markers showed high inter-patient variation and did not correlate to phenylalanine levels, illustrating their potential added value for follow-up. As novel biomarkers for 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, three positional isomers of 3-methylglutaconyl carnitine could be detected in patient plasma. Our results highlight the applicability of current accurate mass multistage fragmentation techniques for structural elucidation of unknown metabolites in human biofluids, offering an unprecedented opportunity to gain further biochemical insights in known inborn errors of metabolism by enabling high confidence identification of novel biomarkers.


Subject(s)
Biomarkers/analysis , Biomarkers/chemistry , Chemical Fractionation/methods , Metabolic Diseases/diagnosis , Metabolomics/methods , Tandem Mass Spectrometry/methods , Acetyl-CoA C-Acetyltransferase/blood , Acetyl-CoA C-Acetyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors/blood , Amino Acid Metabolism, Inborn Errors/diagnosis , Biomarkers/blood , Chromatography, Liquid , Female , Humans , Male , Metabolic Diseases/blood , Metabolism, Inborn Errors/blood , Metabolism, Inborn Errors/diagnosis , Metabolome , Molecular Conformation , Phenylketonurias/blood , Phenylketonurias/diagnosis , Reproducibility of Results , Software
4.
Alzheimers Res Ther ; 9(1): 78, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28934963

ABSTRACT

BACKGROUND: Tauopathies represent heterogeneous groups of neurodegenerative diseases that are characterised by abnormal deposition of the microtubule-associated protein tau. Alzheimer's disease is the most prevalent tauopathy, affecting more than 35 million people worldwide. In this study we investigated changes in metabolic pathways associated with tau-induced neurodegeneration. METHODS: Cerebrospinal fluid (CSF), plasma and brain tissue were collected from a transgenic rat model for tauopathies and from age-matched control animals. The samples were analysed by targeted and untargeted metabolomic methods using high-performance liquid chromatography coupled to mass spectrometry. Unsupervised and supervised statistical analysis revealed biochemical changes associated with the tauopathy process. RESULTS: Energy deprivation and potentially neural apoptosis were reflected in increased purine nucleotide catabolism and decreased levels of citric acid cycle intermediates and glucose. However, in CSF, increased levels of citrate and aconitate that can be attributed to glial activation were observed. Other significant changes were found in arginine and phosphatidylcholine metabolism. CONCLUSIONS: Despite an enormous effort invested in development of biomarkers for tauopathies during the last 20 years, there is no clinically used biomarker or assay on the market. One of the most promising strategies is to create a panel of markers (e.g., small molecules, proteins) that will be continuously monitored and correlated with patients' clinical outcome. In this study, we identified several metabolic changes that are affected during the tauopathy process and may be considered as potential markers of tauopathies in humans.


Subject(s)
Biomarkers/metabolism , Tauopathies/cerebrospinal fluid , Tauopathies/diagnosis , tau Proteins/metabolism , Animals , Apoptosis/genetics , Brain/metabolism , Brain/pathology , Disease Models, Animal , Humans , Male , Metabolomics , Mutation/genetics , Rats , Rats, Inbred SHR , Rats, Transgenic , Tauopathies/genetics , tau Proteins/genetics
5.
Eur J Pharm Sci ; 104: 335-343, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28433749

ABSTRACT

Untargeted metabolite profiling using high-resolution mass spectrometry coupled with liquid chromatography (LC-HRMS), followed by data analysis with the Compound Discoverer 2.0™ software, was used to study the metabolism of imatinib in humans with chronic myeloid leukemia. Plasma samples from control (drug-free) and patient (treated with imatinib) groups were analyzed in full-scan mode and the unknown ions occurring only in the patient group were then, as potential imatinib metabolites, subjected to multi-stage fragmentation in order to elucidate their structure. The application of an untargeted approach, as described in this study, enabled the detection of 24 novel structurally unexpected metabolites. Several sulphur-containing compounds, probably originating after the reaction of reactive intermediates of imatinib with endogenous glutathione, were found and annotated as cysteine and cystine adducts. In the proposed mechanism, the cysteine adducts were formed after the rearrangement of piperazine moiety to imidazoline. On the contrary, in vivo S-N exchange occurred in the case of the cystine adducts. In addition, N-O exchange was observed in the collision cell in the course of the fragmentation of the cystine adducts. The presence of sulphur in the cysteine and cystine conjugates was proved by means of ultra-high resolution measurements using Orbitrap Elite. The detection of metabolites derived from glutathione might improve knowledge about the disposition of imatinib towards bioactivation and help to improve understanding of the mechanism of its hepatotoxicity or nephrotoxicity in humans.


Subject(s)
Antineoplastic Agents/metabolism , Imatinib Mesylate/metabolism , Protein Kinase Inhibitors/metabolism , Sulfur/metabolism , Antineoplastic Agents/blood , Antineoplastic Agents/urine , Chromatography, Liquid , Cysteine/metabolism , Cystine/metabolism , Humans , Imatinib Mesylate/blood , Imatinib Mesylate/urine , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/urine , Sulfur/blood , Sulfur/urine , Tandem Mass Spectrometry/methods
6.
J Proteome Res ; 15(9): 3158-66, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27465658

ABSTRACT

The discovery of tyrosine kinase inhibitors (TKIs) brought a major breakthrough in the treatment of patients with chronic myeloid leukemia (CML). Pathogenetic CML events are closely linked with the Bcr-Abl protein with tyrosine kinase activity. TKIs block the ATP-binding site; therefore, the signal pathways leading to malignant transformation are no longer active. However, there is limited information about the impact of TKI treatment on the metabolome of CML patients. Using liquid chromatography mass spectrometric metabolite profiling and multivariate statistical methods, we analyzed plasma and leukocyte samples of patients newly diagnosed with CML, patients treated with hydroxyurea and TKIs (imatinib, dasatinib, nilotinib), and healthy controls. The global metabolic profiles clearly distinguished the newly diagnosed CML patients and the patients treated with hydroxyurea from those treated with TKIs and the healthy controls. The major changes were found in glycolysis, the citric acid cycle, and amino acid metabolism. We observed differences in the levels of amino acids and acylcarnitines between those patients responding to imatinib treatment and those who were resistant to it. According to our findings, the metabolic profiling may be potentially used as an additional tool for the assessment of response/resistance to imatinib.


Subject(s)
Drug Monitoring/methods , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Metabolome , Metabolomics/methods , Amino Acids/metabolism , Citric Acid Cycle/drug effects , Glycolysis/drug effects , Humans , Hydroxyurea/pharmacology , Hydroxyurea/therapeutic use , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukocytes/chemistry , Leukocytes/metabolism , Plasma/chemistry , Plasma/metabolism , Protein Kinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...