Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 210: 108608, 2024 May.
Article in English | MEDLINE | ID: mdl-38615445

ABSTRACT

Tonoplast Intrinsic Proteins (TIPs) are vital in transporting water and solutes across vacuolar membrane. The role of TIPs in the arsenic stress response is largely undefined. Rice shows sensitivity to the arsenite [As[III]] stress and its accumulation at high concentrations in grains poses severe health hazards. In this study, functional characterization of OsTIP1;2 from Oryza sativa indica cultivar Pusa Basmati-1 (PB-1) was done under the As[III] stress. Overexpression of OsTIP1;2 in PB-1 rice conferred tolerance to As[III] treatment measured in terms of enhanced shoot growth, biomass, and shoot/root ratio of overexpression (OE) lines compared to the wild-type (WT) plants. Moreover, seed priming with the IRW100 yeast cells (deficient in vacuolar membrane As[III] transporter YCF1) expressing OsTIP1;2 further increased As[III] stress tolerance of both WT and OE plants. The dithizone assay showed that WT plants accumulated high arsenic in shoots, while OE lines accumulated more arsenic in roots than shoots thereby limiting the translocation of arsenic to shoot. The activity of enzymatic and non-enzymatic antioxidants also increased in the OE lines on exposure to As[III]. The tissue-specific localization showed OsTIP1;2 promoter activity in root and root hairs, indicating its possible root-specific function. After As[III] treatment in hydroponic medium, the arsenic translocation factor (TF) for WT was around 0.8, while that of OE lines was around 0.2. Moreover, the arsenic content in the grains of OE lines reduced significantly compared to WT plants.


Subject(s)
Arsenic , Arsenites , Oryza , Plant Proteins , Plant Roots , Plant Shoots , Plants, Genetically Modified , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Arsenic/metabolism , Plant Shoots/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Gene Expression Regulation, Plant/drug effects , Biological Transport/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics
2.
J Hazard Mater ; 465: 133078, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38056278

ABSTRACT

The International Agency for Research on Cancer categorizes arsenic (As) as a group I carcinogen. Arsenic exposure significantly reduces growth, development, metabolism, and crop yield. Tonoplast intrinsic proteins (TIPs) belong to the major intrinsic protein (MIP) superfamily and transport various substrates, including metals/metalloids. Our study aimed to characterize rice OsTIP1;2 in As[III] stress response. The gene expression analysis showed that the OsTIP1;2 expression was enhanced in roots on exposure to As[III] treatment. The heterologous expression of OsTIP1;2 in S. cerevisiae mutant lacking YCF1 (ycf1∆) complemented the As[III] transport function of the YCF1 transporter but not for boron (B) and arsenate As[V], indicating its substrate selective nature. The ycf1∆ mutant expressing OsTIP1;2 accumulated more As than the wild type (W303-1A) and ycf1∆ mutant strain carrying the pYES2.1 vector. OsTIP1;2 activity was partially inhibited in the presence of the aquaporin (AQP) inhibitors. The subcellular localization studies confirmed that OsTIP1;2 is localized to the tonoplast. The transient overexpression of OsTIP1;2 in Nicotiana benthamiana leaves resulted in increased activities of enzymatic and non-enzymatic antioxidants, suggesting a potential role in mitigating oxidative stress induced by As[III]. The transgenic N. tabacum overexpressing OsTIP1;2 displayed an As[III]-tolerant phenotype, with increased fresh weight and root length than the wild-type (WT) and empty vector (EV line). The As translocation factor (TF) for WT and EV was around 0.8, while that of OE lines was around 0.4. Moreover, the OE line bioconcentration factor (BCF) was more than 1. Notably, the reduced TF and increased BCF in the OE line imply the potential of OsTIP1;2 for phytostabilization.


Subject(s)
Arsenic , Arsenites , Oryza , Arsenic/metabolism , Oryza/metabolism , Saccharomyces cerevisiae/metabolism , Arsenites/metabolism , Plant Proteins/genetics , Plant Roots/metabolism
3.
Plant Cell Rep ; 40(11): 2097-2109, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34110446

ABSTRACT

With No Lysine kinases (WNKs) are a distinct family of Serine/Threonine protein kinase with unique arrangement of catalytic residues in kinase domain. In WNK, an essential catalytic lysine requisite for attaching ATP and phosphorylation reaction is located in subdomain I, instead of subdomain II, which is essentially a typical feature of other Ser/Thr kinases. WNKs are identified in diverse organisms including multicellular and unicellular organisms. Mammalian WNKs are well characterized at structural and functional level, while plant WNKs are not explored much except few recent studies. Plant WNKs role in various physiological processes viz. ion maintenance, osmotic stress, pH homeostasis, circadian rhythms, regulation of flowering time, proliferation and organ development, and abiotic stresses are known, but the mechanisms involved are unclear. Plant WNKs are known to be involved in enhanced drought and salt stress response via ABA-signaling pathway, but the complete signaling cascade is yet to be elucidated. The current review will discuss the interplay between WNKs and growth regulators and their cross talks in plant growth and development. We have also highlighted the link between the stress phytohormones and WNK members in regulating abiotic stress responses in plants. The present review will provide an overall known mechanism on the involvement of WNKs in plant growth and development and abiotic stress response and highlight its role/applications in the development of stress-tolerant plants.


Subject(s)
Lysine/metabolism , Plant Growth Regulators/metabolism , Plant Physiological Phenomena , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Circadian Rhythm/physiology , Plant Development , Plant Proteins/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...