Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Oper Neurosurg (Hagerstown) ; 23(1): 31-39, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35726927

ABSTRACT

BACKGROUND: The methodology of assessment and training of surgical skills is evolving to deal with the emergence of competency-based training. Artificial neural networks (ANNs), a branch of artificial intelligence, can use newly generated metrics not only for assessment performance but also to quantitate individual metric importance and provide new insights into surgical expertise. OBJECTIVE: To outline the educational utility of using an ANN in the assessment and quantitation of surgical expertise. A virtual reality vertebral osteophyte removal during a simulated surgical spine procedure is used as a model to outline this methodology. METHODS: Twenty-one participants performed a simulated anterior cervical diskectomy and fusion on the Sim-Ortho virtual reality simulator. Participants were divided into 3 groups, including 9 postresidents, 5 senior residents, and 7 junior residents. Data were retrieved from the osteophyte removal component of the scenario, which involved using a simulated burr. The data were manipulated to initially generate 83 performance metrics spanning 3 categories (safety, efficiency, and motion) of which only the most relevant metrics were used to train and test the ANN. RESULTS: The ANN model was trained on 6 safety metrics to a testing accuracy of 83.3%. The contributions of these performance metrics to expertise were revealed through connection weight products and outlined 2 identifiable learning patterns of technical skills. CONCLUSION: This study outlines the potential utility of ANNs which allows a deeper understanding of the composites of surgical expertise and may contribute to the paradigm shift toward competency-based surgical training.


Subject(s)
Osteophyte , Virtual Reality , Artificial Intelligence , Clinical Competence , Humans , Neural Networks, Computer
2.
World Neurosurg ; 148: e326-e339, 2021 04.
Article in English | MEDLINE | ID: mdl-33418122

ABSTRACT

BACKGROUND: Animal brain tumor models can be useful educational tools for the training of neurosurgical residents in risk-free environments. Magnetic resonance imaging (MRI) technologies have not used these models to quantitate tumor, normal gray and white matter, and total tissue removal during complex neurosurgical procedures. This pilot study was carried out as a proof of concept to show the feasibility of using brain tumor models combined with 7-T MRI technology to quantitatively assess tissue removal during subpial tumor resection. METHODS: Seven ex vivo calf brain hemispheres were used to develop the 7-T MRI segmentation methodology. Three brains were used to quantitate brain tissue removal using 7-T MRI segmentation methodology. Alginate artificial brain tumor was created in 4 calf brains to assess the ability of 7-T MRI segmentation methodology to quantitate tumor and gray and white matter along with total tissue volumes removal during a subpial tumor resection procedure. RESULTS: Quantitative studies showed a correlation between removed brain tissue weights and volumes determined from segmented 7-T MRIs. Analysis of baseline and postresection alginate brain tumor segmented 7-T MRIs allowed quantification of tumor and gray and white matter along with total tissue volumes removed and detection of alterations in surrounding gray and white matter. CONCLUSIONS: This pilot study showed that the use of animal tumor models in combination with 7-T MRI technology provides an opportunity to increase the granularity of data obtained from operative procedures and to improve the assessment and training of learners.


Subject(s)
Brain Neoplasms , Cerebral Cortex/diagnostic imaging , Disease Models, Animal , Magnetic Resonance Imaging/methods , Alginates , Animals , Cattle , Cerebral Cortex/surgery , Contrast Media , Fiducial Markers , Gadolinium , Gray Matter/diagnostic imaging , Neoplasm, Residual , Phantoms, Imaging , Pilot Projects , Proof of Concept Study , Species Specificity , Virtual Reality , White Matter/diagnostic imaging
3.
Oper Neurosurg (Hagerstown) ; 19(1): 65-75, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31832652

ABSTRACT

BACKGROUND: Virtual reality surgical simulators provide a safe environment for trainees to practice specific surgical scenarios and allow for self-guided learning. Artificial intelligence technology, including artificial neural networks, offers the potential to manipulate large datasets from simulators to gain insight into the importance of specific performance metrics during simulated operative tasks. OBJECTIVE: To distinguish performance in a virtual reality-simulated anterior cervical discectomy scenario, uncover novel performance metrics, and gain insight into the relative importance of each metric using artificial neural networks. METHODS: Twenty-one participants performed a simulated anterior cervical discectomy on the novel virtual reality Sim-Ortho simulator. Participants were divided into 3 groups, including 9 post-resident, 5 senior, and 7 junior participants. This study focused on the discectomy portion of the task. Data were recorded and manipulated to calculate metrics of performance for each participant. Neural networks were trained and tested and the relative importance of each metric was calculated. RESULTS: A total of 369 metrics spanning 4 categories (safety, efficiency, motion, and cognition) were generated. An artificial neural network was trained on 16 selected metrics and tested, achieving a training accuracy of 100% and a testing accuracy of 83.3%. Network analysis identified safety metrics, including the number of contacts on spinal dura, as highly important. CONCLUSION: Artificial neural networks classified 3 groups of participants based on expertise allowing insight into the relative importance of specific metrics of performance. This novel methodology aids in the understanding of which components of surgical performance predominantly contribute to expertise.


Subject(s)
Virtual Reality , Artificial Intelligence , Clinical Competence , Diskectomy , Humans , Neural Networks, Computer
4.
JAMA Netw Open ; 2(8): e198363, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31373651

ABSTRACT

Importance: Despite advances in the assessment of technical skills in surgery, a clear understanding of the composites of technical expertise is lacking. Surgical simulation allows for the quantitation of psychomotor skills, generating data sets that can be analyzed using machine learning algorithms. Objective: To identify surgical and operative factors selected by a machine learning algorithm to accurately classify participants by level of expertise in a virtual reality surgical procedure. Design, Setting, and Participants: Fifty participants from a single university were recruited between March 1, 2015, and May 31, 2016, to participate in a case series study at McGill University Neurosurgical Simulation and Artificial Intelligence Learning Centre. Data were collected at a single time point and no follow-up data were collected. Individuals were classified a priori as expert (neurosurgery staff), seniors (neurosurgical fellows and senior residents), juniors (neurosurgical junior residents), and medical students, all of whom participated in 250 simulated tumor resections. Exposures: All individuals participated in a virtual reality neurosurgical tumor resection scenario. Each scenario was repeated 5 times. Main Outcomes and Measures: Through an iterative process, performance metrics associated with instrument movement and force, resection of tissues, and bleeding generated from the raw simulator data output were selected by K-nearest neighbor, naive Bayes, discriminant analysis, and support vector machine algorithms to most accurately determine group membership. Results: A total of 50 individuals (9 women and 41 men; mean [SD] age, 33.6 [9.5] years; 14 neurosurgeons, 4 fellows, 10 senior residents, 10 junior residents, and 12 medical students) participated. Neurosurgeons were in practice between 1 and 25 years, with 9 (64%) involving a predominantly cranial practice. The K-nearest neighbor algorithm had an accuracy of 90% (45 of 50), the naive Bayes algorithm had an accuracy of 84% (42 of 50), the discriminant analysis algorithm had an accuracy of 78% (39 of 50), and the support vector machine algorithm had an accuracy of 76% (38 of 50). The K-nearest neighbor algorithm used 6 performance metrics to classify participants, the naive Bayes algorithm used 9 performance metrics, the discriminant analysis algorithm used 8 performance metrics, and the support vector machine algorithm used 8 performance metrics. Two neurosurgeons, 1 fellow or senior resident, 1 junior resident, and 1 medical student were misclassified. Conclusions and Relevance: In a virtual reality neurosurgical tumor resection study, a machine learning algorithm successfully classified participants into 4 levels of expertise with 90% accuracy. These findings suggest that algorithms may be capable of classifying surgical expertise with greater granularity and precision than has been previously demonstrated in surgery.


Subject(s)
Brain Neoplasms/surgery , Clinical Competence , Internship and Residency/methods , Machine Learning , Neurosurgical Procedures/education , Simulation Training/methods , Virtual Reality , Adult , Algorithms , Artificial Intelligence , Canada , Female , Humans , Male , Neurosurgical Procedures/methods
5.
J Surg Educ ; 76(6): 1681-1690, 2019.
Article in English | MEDLINE | ID: mdl-31202633

ABSTRACT

OBJECTIVE: Virtual reality simulators track all movements and forces of simulated instruments, generating enormous datasets which can be further analyzed with machine learning algorithms. These advancements may increase the understanding, assessment and training of psychomotor performance. Consequently, the application of machine learning techniques to evaluate performance on virtual reality simulators has led to an increase in the volume and complexity of publications which bridge the fields of computer science, medicine, and education. Although all disciplines stand to gain from research in this field, important differences in reporting exist, limiting interdisciplinary communication and knowledge transfer. Thus, our objective was to develop a checklist to provide a general framework when reporting or analyzing studies involving virtual reality surgical simulation and machine learning algorithms. By including a total score as well as clear subsections of the checklist, authors and reviewers can both easily assess the overall quality and specific deficiencies of a manuscript. DESIGN: The Machine Learning to Assess Surgical Expertise (MLASE) checklist was developed to help computer science, medicine, and education researchers ensure quality when producing and reviewing virtual reality manuscripts involving machine learning to assess surgical expertise. SETTING: This study was carried out at the McGill Neurosurgical Simulation and Artificial Intelligence Learning Centre. PARTICIPANTS: The authors applied the checklist to 12 articles using machine learning to assess surgical expertise in virtual reality simulation, obtained through a systematic literature review. RESULTS: Important differences in reporting were found between medical and computer science journals. The medical journals proved stronger in discussion quality and weaker in areas related to study design. The opposite trends were observed in computer science journals. CONCLUSIONS: This checklist will aid in narrowing the knowledge divide between computer science, medicine, and education: helping facilitate the burgeoning field of machine learning assisted surgical education.


Subject(s)
Clinical Competence , Education, Medical, Graduate/methods , Educational Measurement/methods , General Surgery/education , Machine Learning , Simulation Training/methods , Virtual Reality , Artificial Intelligence , Practice Guidelines as Topic
6.
Sensors (Basel) ; 9(9): 7308-19, 2009.
Article in English | MEDLINE | ID: mdl-22399997

ABSTRACT

Electronic noses are being developed as systems for the automated detection and classification of odors, vapors, and gases. Artificial neural networks (ANNs) have been used to analyze complex data and to recognize patterns, and have shown promising results in recognition of volatile compounds and odors in electronic nose applications. When an ANN is combined with a sensor array, the number of detectable chemicals is generally greater than the number of unique sensor types. The odor sensing system should be extended to new areas since its standard style where the output pattern from multiple sensors with partially overlapped specificity is recognized by a neural network or multivariate analysis. This paper describes the design, implementation and performance evaluations of the application developed for hazardous odor recognition using Cerebellar Model Articulation Controller (CMAC) based neural networks.

7.
J Autom Methods Manag Chem ; 2007: 38405, 2007.
Article in English | MEDLINE | ID: mdl-18368140

ABSTRACT

The aim of this study is to develop a novel fuzzy clustering neural network (FCNN) algorithm as pattern classifiers for real-time odor recognition system. In this type of FCNN, the input neurons activations are derived through fuzzy c mean clustering of the input data, so that the neural system could deal with the statistics of the measurement error directly. Then the performance of FCNN network is compared with the other network which is well-known algorithm, named multilayer perceptron (MLP), for the same odor recognition system. Experimental results show that both FCNN and MLP provided high recognition probability in determining various learn categories of odors, however, the FCNN neural system has better ability to recognize odors more than the MLP network.

8.
Comput Biol Med ; 36(4): 376-88, 2006 Apr.
Article in English | MEDLINE | ID: mdl-15878480

ABSTRACT

Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +/- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering.


Subject(s)
Arrhythmias, Cardiac/classification , Fuzzy Logic , Neural Networks, Computer , Adult , Algorithms , Electrocardiography , Female , Humans , Male , Pattern Recognition, Automated
9.
IEEE Trans Biomed Eng ; 50(11): 1255-61, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14619995

ABSTRACT

Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications.


Subject(s)
Algorithms , Electromyography/methods , Fuzzy Logic , Joint Prosthesis , Muscle, Skeletal/physiology , Neural Networks, Computer , Upper Extremity/physiology , Equipment Failure Analysis , Humans , Movement/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiopathology , Pattern Recognition, Automated , Prosthesis Design , Upper Extremity/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...