Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 76(9): 2643-8, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15117210

ABSTRACT

Attenuated total reflection mid-infrared spectroscopy is applied for simultaneous detection and quantification of the environmentally relevant analytes benzene, toluene, and the three xylene isomers. The analytes are enriched into a thin polymer membrane coated onto the surface of an internal reflection waveguide, which is exposed to the aqueous sample. Direct detection of analytes permeating into the polymer coating is performed by utilizing evanescent field spectroscopy in the fingerprint range (>10 microm) of the mid-infrared (MIR) spectrum (3-20 microm) without additional sample preparation. All investigated compounds are characterized by well-separated absorption features in the evaluated wavelength regime. Hence, data evaluation was performed by integration of the respective absorption peaks. Limits of detection lower than 20 ppb (v/v) for all xylene isomers, 45 ppb (v/v) for benzene, and 80 ppb (v/v) for toluene have been achieved. The straightforward experimental setup and the achieved detection limits for these environmentally relevant volatile organic compounds in the low-ppb concentration range reveal a substantial potential of MIR evanescent field sensing devices for on-line in situ environmental analysis.


Subject(s)
Benzene/analysis , Spectroscopy, Fourier Transform Infrared/methods , Toluene/analysis , Water/chemistry , Xylenes/analysis , Benzene/chemistry , Calibration , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared/instrumentation , Toluene/chemistry , Xylenes/chemistry
2.
Appl Spectrosc ; 57(6): 607-13, 2003 Jun.
Article in English | MEDLINE | ID: mdl-14658691

ABSTRACT

A prototype mid-infrared sensor system for the determination of volatile organic pollutants in groundwater was developed and tested under real-world conditions. The sensor comprises a portable Fourier transform infrared spectrometer, coupled to the sensor head via mid-infrared transparent silver halide fiber-optic cables. A 10 cm unclad middle section of the 6-m-long fiber is coated with ethylene propylene copolymer in order to enrich the analytes within the penetration depth of the evanescent field protruding from the fiber sensor head. A mixture of tetrachloroethylene, dichlorobenzene, diethyl phthalate, and xylene isomers at concentrations in the low ppm region was investigated qualitatively and quantitatively in an artificial aquifer system filled with Munich gravel. This simulated real-world site at a pilot scale enables in situ studies of the sensor response and spreading of the pollutants injected into the system with controlled groundwater flow. The sensor head was immersed into a monitoring well of the aquifer system at a distance of 1 m downstream of the sample inlet and at a depth of 30 cm. Within one hour, the analytes were clearly identified in the fingerprint region of the IR spectrum (1300 to 700 cm(-1)). The results have been validated by head-space gas chromatography, using samples collected during the field measurement. Five out of six analytes could be discriminated simultaneously; for two of the analytes the quantitative results are in agreement with the reference analysis.


Subject(s)
Fiber Optic Technology/instrumentation , Membranes, Artificial , Organic Chemicals/analysis , Soil Pollutants/analysis , Spectroscopy, Fourier Transform Infrared/instrumentation , Transducers , Water Pollutants, Chemical/analysis , Equipment Design , Equipment Failure Analysis , Optical Fibers , Organic Chemicals/chemistry , Pilot Projects , Reproducibility of Results , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared/methods , Volatilization
3.
Analyst ; 128(4): 397-403, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12741647

ABSTRACT

For efficient development assessment, and calibration of new chemical analyzers a large number of independently prepared samples of target analytes is necessary. Whereas mixing units for gas analysis are readily available, there is a lack of instrumentation for accurate preparation of liquid samples containing volatile organic compounds (VOCs). Manual preparation of liquid samples containing VOCs at trace concentration levels is a particularly challenging and time consuming task. Furthermore, regularly scheduled calibration of sensors and analyzer systems demands for computer controlled automated sample preparation systems. In this paper we present a novel liquid mixing device enabling extensive measurement series with focus on volatile organic compounds, facilitating analysis of water polluted by traces of volatile hydrocarbons. After discussing the mixing system and control software, first results obtained by coupling with an FT-IR spectrometer are reported. Properties of the mixing system are assessed by mid-infrared attenuated total reflection (ATR) spectroscopy of methanol-acetone mixtures and by investigation of multicomponent samples containing volatile hydrocarbons such as 1,2,4-trichlorobenzene and tetrachloroethylene. Obtained ATR spectra are evaluated by principal component regression (PCR) algorithms. It is demonstrated that the presented sample mixing device provides reliable multicomponent mixtures with sufficient accuracy and reproducibility at trace concentration levels.


Subject(s)
Environmental Monitoring/instrumentation , Hydrocarbons, Aromatic/analysis , Water Pollution/analysis , Electronic Data Processing , Environmental Monitoring/methods , Specimen Handling/methods , Spectrophotometry, Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...