Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
RNA Biol ; 21(1): 1-12, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303117

ABSTRACT

MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.


Subject(s)
Marchantia , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Marchantia/genetics , Marchantia/metabolism , Plants/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Genitalia/metabolism , Gene Expression Regulation, Plant
2.
BMC Plant Biol ; 23(1): 623, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057711

ABSTRACT

Although most of the genes encoding tRNAs in plants are dispersed throughout the genome, a fraction of them form tRNA gene clusters. In Arabidopsis thaliana, the smallest of tRNA clusters on chromosome 5 consists of four tRNA-Cys-GCA genes placed within repeating units of 0.4 kbp. A systematic analysis of the genomic sequences of syntenic regions from various ecotypes of A. thaliana showed that the general structure of the cluster, consisting of a tRNA-Cys pseudogene followed by repeating units containing tRNA-Cys genes, is well conserved. However, there is significant heterogeneity in the number of repeating units between different ecotypes. A unique feature of this cluster is the presence of putative transposable elements (Helitron). In addition, two further tRNA-Cys gene mini-clusters (gene pairs) in A. thaliana were identified. RNA-seq-based evaluation of expression of tRNA-Cys-GCA genes showed a positive signal for 11 out of 13 unique transcripts. An analysis of the conservation of the tRNA-Cys clusters from A. thaliana with the corresponding regions from four other Arabidopsis species suggests a sequence of events that led to the divergence of these regions.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Base Sequence , Genome , RNA, Transfer/genetics , Multigene Family
3.
Physiol Plant ; 175(5): e14018, 2023.
Article in English | MEDLINE | ID: mdl-37882256

ABSTRACT

MicroRNAs are small, noncoding RNA molecules that regulate the expression of their target genes. The MIR444 gene family is present exclusively in monocotyledons, and microRNAs444 from this family have been shown to target certain MADS-box transcription factors in rice and barley. We identified three barley MIR444 (MIR444a/b/c) genes and comprehensively characterised their structure and the processing pattern of the primary transcripts (pri-miRNAs444). Pri-microRNAs444 undergo extensive alternative splicing, generating functional and nonfunctional pri-miRNA444 isoforms. We show that barley pri-miRNAs444 contain numerous open reading frames (ORFs) whose transcripts associate with ribosomes. Using specific antibodies, we provide evidence that selected ORFs encoding PEP444a within MIR444a and PEP444c within MIR444c are expressed in barley plants. Moreover, we demonstrate that CRISPR-associated endonuclease 9 (Cas9)-mediated mutagenesis of the PEP444c-encoding sequence results in a decreased level of PEP444 transcript in barley shoots and roots and a 5-fold reduced level of mature microRNA444c in roots. Our observations suggest that PEP444c encoded by the MIR444c gene is involved in microRNA444c biogenesis in barley.


Subject(s)
Hordeum , MicroRNAs , Hordeum/genetics , Hordeum/metabolism , Gene Expression Regulation, Plant/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Alternative Splicing
4.
Database (Oxford) ; 20232023 08 08.
Article in English | MEDLINE | ID: mdl-37555549

ABSTRACT

The TRGdb database is a resource dedicated to taxonomically restricted genes (TRGs) in bacteria. It provides a comprehensive collection of genes that are specific to different genera and species, according to the latest release of bacterial taxonomy. The user interface allows for easy browsing and searching as well as sequence similarity exploration. The website also provides information on each TRG protein sequence, including its level of disorder, complexity and tendency to aggregate. TRGdb is a valuable resource for gaining a deeper understanding of the TRG-associated, unique features, and characteristics of bacterial organisms. Database URL www.combio.pl/trgdb.


Subject(s)
Bacteria , Data Management , Bacteria/genetics , Databases, Factual , Amino Acid Sequence , User-Computer Interface , Internet
5.
Protein Sci ; 32(6): e4647, 2023 06.
Article in English | MEDLINE | ID: mdl-37095066

ABSTRACT

The Escherichia coli enzyme EcAIII catalyzes the hydrolysis of L-Asn to L-Asp and ammonia. Using a nature-inspired mutagenesis approach, we designed and produced five new EcAIII variants (M200I, M200L, M200K, M200T, M200W). The modified proteins were characterized by spectroscopic and crystallographic methods. All new variants were enzymatically active, confirming that the applied mutagenesis procedure has been successful. The determined crystal structures revealed new conformational states of the EcAIII molecule carrying the M200W mutation and allowed a high-resolution observation of an acyl-enzyme intermediate with the M200L mutant. In addition, we performed structure prediction, substrate docking, and molecular dynamics simulations for 25 selected bacterial orthologs of EcAIII, to gain insights into how mutations at the M200 residue affect the active site and substrate binding mode. This comprehensive strategy, including both experimental and computational methods, can be used to guide further enzyme engineering and can be applied to the study of other proteins of medicinal or biotechnological importance.


Subject(s)
Asparaginase , Escherichia coli , Asparaginase/chemistry , Escherichia coli/metabolism , Amino Acid Substitution , Molecular Dynamics Simulation , Catalytic Domain , Binding Sites
6.
Front Plant Sci ; 14: 1124785, 2023.
Article in English | MEDLINE | ID: mdl-36950348

ABSTRACT

MicroRNAs (miRNAs) are major regulators of gene expression during plant development under normal and stress conditions. In this study, we analyzed the expression of 150 conserved miRNAs during drought stress applied to barley ready to flower. The dynamics of miRNAs expression was also observed after rewatering. Target messenger RNA (mRNAs) were experimentally identified for all but two analyzed miRNAs, and 41 of the targets were not reported before. Drought stress applied to barley induced accelerated flowering coordinated by a pair of two differently expressed miRNAs originating from a single precursor: hvu-miR172b-3p and hvu-miR172b-5p. Increased expression of miRNA172b-3p during drought leads to the downregulation of four APETALA2(AP2)-like genes by their mRNA cleavage. In parallel, the downregulation of the miRNA172b-5p level results in an increased level of a newly identified target, trehalose-6-phosphate synthase, a key enzyme in the trehalose biosynthesis pathway. Therefore, drought-treated plants have higher trehalose content, a known osmoprotectant, whose level is rapidly dropping after watering. In addition, trehalose-6-phosphate, an intermediate of the trehalose synthesis pathway, is known to induce flowering. The hvu-miRNA172b-5p/trehalose-6-phosphate synthase and hvu-miRNA172b-3p/AP2-like create a module leading to osmoprotection and accelerated flowering induction during drought.

7.
Genome Biol Evol ; 15(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36790099

ABSTRACT

Taxonomically restricted genes (TRGs) are unique for a defined group of organisms and may act as potential genetic determinants of lineage-specific, biological properties. Here, we explore the TRGs of highly diverse and economically important Bacillus bacteria by examining commonly used TRG identification parameters and data sources. We show the significant effects of sequence similarity thresholds, composition, and the size of the reference database in the identification process. Subsequently, we applied stringent TRG search parameters and expanded the identification procedure by incorporating an analysis of noncoding and non-syntenic regions of non-Bacillus genomes. A multiplex annotation procedure minimized the number of false-positive TRG predictions and showed nearly one-third of the alleged TRGs could be mapped to genes missed in genome annotations. We traced the putative origin of TRGs by identifying homologous, noncoding genomic regions in non-Bacillus species and detected sequence changes that could transform these regions into protein-coding genes. In addition, our analysis indicated that Bacillus TRGs represent a specific group of genes mostly showing intermediate sequence properties between genes that are conserved across multiple taxa and nonannotated peptides encoded by open reading frames.


Subject(s)
Bacillus , Bacillus/genetics , Genome , Genomics , Open Reading Frames
8.
Front Plant Sci ; 13: 950796, 2022.
Article in English | MEDLINE | ID: mdl-36172555

ABSTRACT

Nitrogen (N) is an important element for plant growth and development. Although several studies have examined plants' response to N deficiency, studies on plants' response to excess N, which is common in fertilizer-based agrosystems, are limited. Therefore, the aim of this study was to examine the response of barley to excess N conditions, specifically the root response. Additionally, genomic mechanism of excess N response in barley was elucidated using transcriptomic technologies. The results of the study showed that barley MADS27 transcription factor was mainly expressed in the roots and its gene contained N-responsive cis-regulatory elements in the promoter region. Additionally, there was a significant decrease in HvMADS27 expression under excess N condition; however, its expression was not significantly affected under low N condition. Phenotypic analysis of the root system of HvMADS27 knockdown and overexpressing barley plants revealed that HvMADS27 regulates barley root architecture under excess N stress. Further analysis of wild-type (WT) and transgenic barley plants (hvmads27 kd and hvmads27 c-Myc OE) revealed that HvMADS27 regulates the expression of HvBG1 ß-glucosidase, which in turn regulates abscisic acid (ABA) level in roots. Overall, the findings of this study showed that HvMADS27 expression is downregulated in barley roots under excess N stress, which induces HvBG1 expression, leading to the release of ABA from ABA-glucose conjugate, and consequent shortening of the roots.

9.
Sci Rep ; 12(1): 15797, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138049

ABSTRACT

L-Asparaginases, which convert L-asparagine to L-aspartate and ammonia, come in five types, AI-AV. Some bacterial type AII enzymes are a key element in the treatment of acute lymphoblastic leukemia in children, but new L-asparaginases with better therapeutic properties are urgently needed. Here, we search publicly available bacterial genomes to annotate L-asparaginase proteins belonging to the five known types. We characterize taxonomic, phylogenetic, and genomic patterns of L-asparaginase occurrences pointing to frequent horizontal gene transfer (HGT) events, also occurring multiple times in the same recipient species. We show that the reference AV gene, encoding a protein originally found and structurally studied in Rhizobium etli, was acquired via HGT from Burkholderia. We also describe the sequence variability of the five L-asparaginase types and map the conservation levels on the experimental or predicted structures of the reference enzymes, finding the most conserved residues in the protein core near the active site, and the most variable ones on the protein surface. Additionally, we highlight the most common sequence features of bacterial AII proteins that may aid in selecting therapeutic L-asparaginases. Finally, we point to taxonomic units of bacteria that do not contain recognizable sequences of any of the known L-asparaginase types, implying that those microorganisms most likely contain new, as yet unknown types of L-asparaginases. Such novel enzymes, when properly identified and characterized, could hold promise as antileukemic drugs.


Subject(s)
Asparaginase , Asparagine , Ammonia , Asparaginase/genetics , Asparagine/genetics , Aspartic Acid/genetics , Bacteria/enzymology , Bacterial Proteins/genetics , Gene Transfer, Horizontal , Phylogeny
10.
J Exp Bot ; 73(13): 4528-4545, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35275209

ABSTRACT

MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules, 18-24 nucleotides long, that control multiple gene regulatory pathways via post-transcriptional gene silencing in eukaryotes. To develop a comprehensive picture of the evolutionary history of miRNA biogenesis and action in land plants, studies on bryophyte representatives are needed. Here, we review current understanding of liverwort MIR gene structure, miRNA biogenesis, and function, focusing on the simple thalloid Pellia endiviifolia and the complex thalloid Marchantia polymorpha. We review what is known about conserved and non-conserved miRNAs, their targets, and the functional implications of miRNA action in M. polymorpha and P. endiviifolia. We note that most M. polymorpha miRNAs are encoded within protein-coding genes and provide data for 23 MIR gene structures recognized as independent transcriptional units. We identify M. polymorpha genes involved in miRNA biogenesis that are homologous to those identified in higher plants, including those encoding core microprocessor components and other auxiliary and regulatory proteins that influence the stability, folding, and processing of pri-miRNAs. We analyzed miRNA biogenesis proteins and found similar domain architecture in most cases. Our data support the hypothesis that almost all miRNA biogenesis factors in higher plants are also present in liverworts, suggesting that they emerged early during land plant evolution.


Subject(s)
Embryophyta , Hepatophyta , MicroRNAs , Embryophyta/genetics , Embryophyta/metabolism , Hepatophyta/genetics , Hepatophyta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Interference , RNA Processing, Post-Transcriptional
11.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37589306

ABSTRACT

BACKGROUND: One of the most effective and useful methods to explore the content of biological databases is searching with nucleotide or protein sequences as a query. However, especially in the case of nucleic acids, due to the large volume of data generated by the next-generation sequencing (NGS) technologies, this approach is often not available. The hierarchical organization of the NGS records is primarily designed for browsing or text-based searches of the information provided in metadata-related keywords, limiting the efficiency of database exploration. FINDINGS: We developed an automated pipeline that incorporates the well-established NGS data-processing tools and procedures to allow easy and effective sampling of the NCBI SRA database records. Given a file with query nucleotide sequences, our tool estimates the matching content of SRA accessions by probing only a user-defined fraction of a record's sequences. Based on the selected parameters, it allows performing a full mapping experiment with records that meet the required criteria. The pipeline is designed to be easy to operate-it offers a fully automatic setup procedure and is fixed on tested supporting tools. The modular design and implemented usage modes allow a user to scale up the analyses into complex computational infrastructure. CONCLUSIONS: We present an easy-to-operate and automated tool that expands the way a user can access and explore the information contained within the records deposited in the NCBI SRA database.


Subject(s)
High-Throughput Nucleotide Sequencing , Metadata , Amino Acid Sequence , Databases, Factual , Nucleotides
12.
BMC Biol ; 19(1): 223, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625070

ABSTRACT

BACKGROUND: Characterizing phage-host interactions is critical to understanding the ecological role of both partners and effective isolation of phage therapeuticals. Unfortunately, experimental methods for studying these interactions are markedly slow, low-throughput, and unsuitable for phages or hosts difficult to maintain in laboratory conditions. Therefore, a number of in silico methods emerged to predict prokaryotic hosts based on viral sequences. One of the leading approaches is the application of the BLAST tool that searches for local similarities between viral and microbial genomes. However, this prediction method has three major limitations: (i) top-scoring sequences do not always point to the actual host; (ii) mosaic virus genomes may match to many, typically related, bacteria; and (iii) viral and host sequences may diverge beyond the point where their relationship can be detected by a BLAST alignment. RESULTS: We created an extension to BLAST, named Phirbo, that improves host prediction quality beyond what is obtainable from standard BLAST searches. The tool harnesses information concerning sequence similarity and bacteria relatedness to predict phage-host interactions. Phirbo was evaluated on three benchmark sets of known virus-host pairs, and it improved precision and recall by 11-40 percentage points over currently available, state-of-the-art, alignment-based, alignment-free, and machine-learning host prediction tools. Moreover, the discriminatory power of Phirbo for the recognition of virus-host relationships surpassed the results of other tools by at least 10 percentage points (area under the curve = 0.95), yielding a mean host prediction accuracy of 57% and 68% at the genus and family levels, respectively, and drops by 12 percentage points when using only a fraction of viral genome sequences (3 kb). Finally, we provide insights into a repertoire of protein and ncRNA genes that are shared between phages and hosts and may be prone to horizontal transfer during infection. CONCLUSIONS: Our results suggest that Phirbo is a simple and effective tool for predicting phage-host relationships.


Subject(s)
Bacteriophages , Viruses , Bacteria/genetics , Bacteriophages/genetics , Genome, Viral , Machine Learning , Viruses/genetics
13.
Front Plant Sci ; 12: 639631, 2021.
Article in English | MEDLINE | ID: mdl-33936130

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae infection, is a disease of growing importance in cruciferous crops, including oilseed rape (Brassica napus). The affected plants exhibit prominent galling of the roots that impairs their capacity for water and nutrient uptake, which leads to growth retardation, wilting, premature ripening, or death. Due to the scarcity of effective means of protection against the pathogen, breeding of resistant varieties remains a crucial component of disease control measures. The key aspect of the breeding process is the identification of genetic factors associated with variable response to the pathogen exposure. Although numerous clubroot resistance loci have been described in Brassica crops, continuous updates on the sources of resistance are necessary. Many of the resistance genes are pathotype-specific, moreover, resistance breakdowns have been reported. In this study, we characterize the clubroot resistance locus in the winter oilseed rape cultivar "Tosca." In a series of greenhouse experiments, we evaluate the disease severity of P. brassicae-challenged "Tosca"-derived population of doubled haploids, which we genotype with Brassica 60 K array and a selection of SSR/SCAR markers. We then construct a genetic map and narrow down the resistance locus to the 0.4 cM fragment on the A03 chromosome, corresponding to the region previously described as Crr3. Using Oxford Nanopore long-read genome resequencing and RNA-seq we review the composition of the locus and describe a duplication of TIR-NBS-LRR gene. Further, we explore the transcriptomic differences of the local genes between the clubroot resistant and susceptible, inoculated and control DH lines. We conclude that the duplicated TNL gene is a promising candidate for the resistance factor. This study provides valuable resources for clubroot resistance breeding programs and lays a foundation for further functional studies on clubroot resistance.

14.
BMC Genomics ; 22(1): 165, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750301

ABSTRACT

BACKGROUND: Small RNAs (sRNAs) are 20-30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. RESULTS: In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, Bonferroni adjusted p-value < 0.05) are represented by 15 molecules in shoot and 13 in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13% from the average of the unique small RNA expressed under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01%). More than 80% of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3'-5' exonuclease). This suggests that most small RNAs may be generated upon nucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools. CONCLUSIONS: Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.


Subject(s)
Hordeum , MicroRNAs , Gene Expression Profiling , Gene Expression Regulation, Plant , Hordeum/genetics , MicroRNAs/genetics , RNA-Seq
15.
Methods Mol Biol ; 2170: 53-77, 2021.
Article in English | MEDLINE | ID: mdl-32797451

ABSTRACT

MicroRNAs control plant development and are key regulators of plant responses to biotic and abiotic stresses. Thus, their expression must be carefully controlled since both excess and deficiency of a given microRNA may be deleterious to plant cell. MicroRNA expression regulation can occur at several stages of their biogenesis pathway. One of the most important of these regulatory checkpoints is transcription efficiency. mirEX database is a tool for exploration and visualization of plant pri-miRNA expression profiles. It includes results obtained using high-throughput RT-qPCR platform designed to monitor pri-miRNA expression in different miRNA biogenesis mutants and developmental stages of Arabidopsis, barley, and Pellia plants. A step-by-step instruction for browsing the database and detailed protocol for high-throughput RT-qPCR experiments, including list of primers designed for the amplification of pri-miRNAs, are presented.


Subject(s)
Arabidopsis/metabolism , Hordeum/metabolism , MicroRNAs/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Hordeum/genetics , MicroRNAs/chemistry
16.
Int J Mol Sci ; 21(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927724

ABSTRACT

Glycogen synthase kinase 3 (GSK3) is a highly conserved kinase present in all eukaryotes and functions as a key regulator of a wide range of physiological and developmental processes. The kinase, known in land plants as GSK3/SHAGGY-like kinase (GSK), is a key player in the brassinosteroid (BR) signaling pathway. The GSK genes, through the BRs, affect diverse developmental processes and modulate responses to environmental factors. In this work, we describe functional analysis of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. The RNAi-mediated silencing of the target HvGSK1.1 gene was associated with modified expression of its paralogs HvGSK1.2, HvGSK2.1, HvGSK3.1, and HvGSK4.1 in plants grown in normal and in salt stress conditions. Low nucleotide similarity between the silencing fragment and barley GSK genes and the presence of BR-dependent transcription factors' binding sites in promoter regions of barley and rice GSK genes imply an innate mechanism responsible for co-regulation of the genes. The results of the leaf inclination assay indicated that silencing of HvGSK1.1 and the changes of GSK paralogs enhanced the BR-dependent signaling in the plants. The strongest phenotype of transgenic lines with downregulated HvGSK1.1 and GSK paralogs had greater biomass of the seedlings grown in normal conditions and salt stress as well as elevated kernel weight of plants grown in normal conditions. Both traits showed a strong negative correlation with the transcript level of the target gene and the paralogs. The characteristics of barley lines with silenced expression of HvGSK1.1 are compatible with the expected phenotypes of plants with enhanced BR signaling. The results show that manipulation of the GSK-encoding genes provides data to explore their biological functions and confirm it as a feasible strategy to generate plants with improved agricultural traits.


Subject(s)
Glycogen Synthase Kinases/physiology , Hordeum/physiology , Salt Tolerance/genetics , Seeds/growth & development , Biomass , Brassinosteroids/metabolism , Gene Silencing , Plant Proteins/physiology , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/growth & development
17.
Front Pharmacol ; 11: 1207, 2020.
Article in English | MEDLINE | ID: mdl-32922288

ABSTRACT

Anti-tumor necrosis factor (TNF) therapy is used for the induction and maintenance of remission in Crohn's disease (CD) patients. However, primary nonresponders to initial treatment constitute 20%-40% of cases. The causes of this phenomenon are still unknown. In this study, we aimed to determine the genetic predictors of the variable reactions of CD patients to anti-TNF therapy. Using long-range PCR libraries and the next-generation sequencing (NGS) method, we performed broad pharmacogenetic studies including a panel of 23 genes (TNFRSF1A, TNFRSF1B, CASP9, FCGR3A, LTA, TNF, FAS, ADAM17, IL17A, IL6, MMP1, MMP3, S100A8, S100A9, S100A12, TLR2, TLR4, TLR9, CD14, IL23R, IL23, IL1R, and IL1B) in a group of 107 diagnosed and clinically characterized CD patients following anti-TNF therapy. In the studied group, we indicated, in total, 598 single nucleotide variants for all analyzed genomic targets. Twelve patients (11.2%) did not respond to the induction therapy, which was associated with alleles in 11 loci located in FCGR3A (rs7539036, rs6672453, rs373184583, and rs12128686), IL1R (rs2041747), TNFRSF1B (rs5746053), IL1B (rs1071676, rs1143639, rs1143637, and rs1143634), and FAS (rs7896789) genes. After multiple comparison corrections, the results were not statistically significant, however for nonresponders the alleles distribution for those loci presented large differences and specified scheme compared to responders and populations. These findings require further investigation in an independent larger cohort before introducing them for a clinical setting, however, we identified an interesting direction. Polymorphism of the FCGR3A, IL1R, TNFRSF1B, IL1B, and FAS genes could be a predictor of the primary response to anti-TNF therapy in CD patients.

18.
Planta ; 252(2): 21, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32671488

ABSTRACT

MAIN CONCLUSION: This study shows differences in gene expression between male and female gametophytes of the simple thalloid liverwort with a distinction between the vegetative and reproductive phases of growth. Pellia endiviifolia is a simple thalloid liverwort that, together with hornworts and mosses, represents the oldest living land plants. The limited taxon sampling for genomic and functional studies hampers our understanding of processes governing evolution of these plants. RNA sequencing represents an attractive way to elucidate the molecular mechanisms of non-model species development. In the present study, RNA-seq was used to profile the differences in gene expression between P. endiviifolia male and female gametophytes, with a distinction between the vegetative and reproductive phases of growth. By comparison of the gene expression profiles from individuals producing sex organs with the remaining thalli types, we have determined a set of genes whose expression might be important for the development of P. endiviifolia reproductive organs. The selected differentially expressed genes (DEGs) were categorized into five main pathways: metabolism, genetic information processing, environmental information processing, cellular processes, and organismal systems. A comparison of the obtained data with the Marchantia polymorpha transcriptome resulted in the identification of genes exhibiting a similar expression pattern during the reproductive phase of growth between members of the two distinct liverwort classes. The common expression profile of  87 selected genes suggests a common mechanism governing sex organ development in both liverwort species. The obtained RNA-seq results were confirmed by RT-qPCR for the DEGs with the highest differences in expression level. Five Pellia-female-specific and two Pellia-male-specific DEGs showed enriched expression in archegonia and antheridia, respectively. The identified genes are promising candidates for functional studies of their involvement in liverwort sexual reproduction.


Subject(s)
Hepatophyta/genetics , RNA-Seq , Transcriptome , Germ Cells, Plant , Hepatophyta/growth & development , Marchantia/genetics , Sequence Analysis, RNA
19.
Genes (Basel) ; 11(5)2020 04 29.
Article in English | MEDLINE | ID: mdl-32365647

ABSTRACT

The regulation of mRNA (messenger RNA) levels by microRNA-mediated activity is especially important in plant responses to environmental stresses. In this work, we report six novel barley microRNAs, including two processed from the same precursor that are severely downregulated under drought conditions. For all analyzed microRNAs, we found target genes that were upregulated under drought conditions and that were known to be involved in a plethora of processes from disease resistance to chromatin-protein complex formation and the regulation of transcription in mitochondria. Targets for novel barley microRNAs were confirmed through degradome data analysis and RT-qPCR using primers flanking microRNA-recognition site. Our results show a broad transcriptional response of barley to water deficiency conditions through microRNA-mediated gene regulation and facilitate further research on drought tolerance in crops.


Subject(s)
Hordeum/genetics , MicroRNAs/genetics , Mitochondria/genetics , RNA, Messenger/genetics , Chromatin/genetics , Droughts , Gene Expression Regulation, Plant/genetics , Hordeum/growth & development , Stress, Physiological/genetics
20.
Plant Cell ; 32(6): 1797-1819, 2020 06.
Article in English | MEDLINE | ID: mdl-32265262

ABSTRACT

Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenotypic diversity. Recent analyses of sequencing data for >1000 Arabidopsis (Arabidopsis thaliana) accessions focused on small variations and did not include CNVs. Here, we performed genome-wide analysis and identified large indels (50 to 499 bp) and CNVs (500 bp and larger) in these accessions. The CNVs fully overlap with 18.3% of protein-coding genes, with enrichment for evolutionarily young genes and genes involved in stress and defense. By combining analysis of both genes and transposable elements (TEs) affected by CNVs, we revealed that the variation statuses of genes and TEs are tightly linked and jointly contribute to the unequal distribution of these elements in the genome. We also determined the gene copy numbers in a set of 1060 accessions and experimentally validated the accuracy of our predictions by multiplex ligation-dependent probe amplification assays. We then successfully used the CNVs as markers to analyze population structure and migration patterns. Finally, we examined the impact of gene dosage variation triggered by a CNV spanning the SEC10 gene on SEC10 expression at both the transcript and protein levels. The catalog of CNVs, CNV-overlapping genes, and their genotypes in a top model dicot will stimulate the exploration of the genetic basis of phenotypic variation.


Subject(s)
Arabidopsis/genetics , DNA Copy Number Variations/genetics , Genome, Plant/genetics , DNA Transposable Elements/genetics , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...