Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(1): e0280077, 2023.
Article in English | MEDLINE | ID: mdl-36607958

ABSTRACT

Flux balance analysis (FBA) remains one of the most used methods for modeling the entirety of cellular metabolism, and a range of applications and extensions based on the FBA framework have been generated. Dynamic flux balance analysis (dFBA), the expansion of FBA into the time domain, still has issues regarding accessibility limiting its widespread adoption and application, such as a lack of a consistently rigid formalism and tools that can be applied without expert knowledge. Recent work has combined dFBA with enzyme-constrained flux balance analysis (decFBA), which has been shown to greatly improve accuracy in the comparison of computational simulations and experimental data, but such approaches generally do not take into account the fact that altering the enzyme composition of a cell is not an instantaneous process. Here, we have developed a decFBA method that explicitly takes enzyme change constraints (ecc) into account, decFBAecc. The resulting software is a simple yet flexible framework for using genome-scale metabolic modeling for simulations in the time domain that has full interoperability with the COBRA Toolbox 3.0. To assess the quality of the computational predictions of decFBAecc, we conducted a diauxic growth fermentation experiment with Escherichia coli BW25113 in glucose minimal M9 medium. The comparison of experimental data with dFBA, decFBA and decFBAecc predictions demonstrates how systematic analyses within a fixed constraint-based framework can aid the study of model parameters. Finally, in explaining experimentally observed phenotypes, our computational analysis demonstrates the importance of non-linear dependence of exchange fluxes on medium metabolite concentrations and the non-instantaneous change in enzyme composition, effects of which have not previously been accounted for in constraint-based analysis.


Subject(s)
Models, Biological , Software , Escherichia coli/metabolism , Fermentation , Metabolic Networks and Pathways , Metabolic Flux Analysis
2.
PLoS One ; 17(1): e0262450, 2022.
Article in English | MEDLINE | ID: mdl-35085271

ABSTRACT

Genome-scale metabolic models (GEMs) are mathematical representations of metabolism that allow for in silico simulation of metabolic phenotypes and capabilities. A prerequisite for these predictions is an accurate representation of the biomolecular composition of the cell necessary for replication and growth, implemented in GEMs as the so-called biomass objective function (BOF). The BOF contains the metabolic precursors required for synthesis of the cellular macro- and micromolecular constituents (e.g. protein, RNA, DNA), and its composition is highly dependent on the particular organism, strain, and growth condition. Despite its critical role, the BOF is rarely constructed using specific measurements of the modeled organism, drawing the validity of this approach into question. Thus, there is a need to establish robust and reliable protocols for experimental condition-specific biomass determination. Here, we address this challenge by presenting a general pipeline for biomass quantification, evaluating its performance on Escherichia coli K-12 MG1655 sampled during balanced exponential growth under controlled conditions in a batch-fermentor set-up. We significantly improve both the coverage and molecular resolution compared to previously published workflows, quantifying 91.6% of the biomass. Our measurements display great correspondence with previously reported measurements, and we were also able to detect subtle characteristics specific to the particular E. coli strain. Using the modified E. coli GEM iML1515a, we compare the feasible flux ranges of our experimentally determined BOF with the original BOF, finding that the changes in BOF coefficients considerably affect the attainable fluxes at the genome-scale.


Subject(s)
Escherichia coli K12/growth & development , Escherichia coli K12/genetics , Biomass , Computer Simulation , Genome, Bacterial/genetics , Models, Biological
4.
BMC Infect Dis ; 21(1): 548, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34107917

ABSTRACT

BACKGROUND: While invasive social distancing measures have proven efficient to control the spread of pandemics failing wide-scale deployment of vaccines, they carry vast societal costs. The development of a diagnostic methodology for identifying COVID-19 infection through simple testing was a reality only a few weeks after the novel virus was officially announced. Thus, we were interested in exploring the ability of regular testing of non-symptomatic people to reduce cases and thereby offer a non-pharmaceutical tool for controlling the spread of a pandemic. METHODS: We developed a data-driven individual-based epidemiological network model in order to investigate epidemic countermeasures. This models is based on high-resolution demographic data for each municipality in Norway, and each person in the model is subject to Susceptible-Exposed-Infectious-Recovered (SEIR) dynamics. The model was calibrated against hospitalization data in Oslo, Norway, a city with a population of 700k which we have used as the simulations focus. RESULTS: Finding that large households function as hubs for the propagation of COVID-19, we assess the intervention efficiency of targeted pooled household testing (TPHT) repeatedly. For an outbreak with reproductive number R=1.4, we find that weekly TPHT of the 25% largest households brings R below unity. For the case of R=1.2, our results suggest that TPHT with the largest 25% of households every three days in an urban area is as effective as a lockdown in curbing the outbreak. Our investigations of different disease parameters suggest that these results are markedly improved for disease variants that more easily infect young people, and when compliance with self-isolation rules is less than perfect among suspected symptomatic cases. These results are quite robust to changes in the testing frequency, city size, and the household-size distribution. Our results are robust even with only 50% of households willing to participate in TPHT, provided the total number of tests stay unchanged. CONCLUSIONS: Pooled and targeted household testing appears to be a powerful non-pharmaceutical alternative to more invasive social-distancing and lock-down measures as a localized early response to contain epidemic outbreaks.


Subject(s)
Communicable Disease Control/methods , Pandemics/prevention & control , Adolescent , Asymptomatic Infections/epidemiology , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing/methods , Disease Outbreaks/prevention & control , Family Characteristics , Hospitalization , Humans , Models, Theoretical , Norway/epidemiology , SARS-CoV-2/isolation & purification
5.
PLoS Comput Biol ; 17(5): e1008528, 2021 05.
Article in English | MEDLINE | ID: mdl-34029317

ABSTRACT

Genome-scale metabolic modeling is an important tool in the study of metabolism by enhancing the collation of knowledge, interpretation of data, and prediction of metabolic capabilities. A frequent assumption in the use of genome-scale models is that the in vivo organism is evolved for optimal growth, where growth is represented by flux through a biomass objective function (BOF). While the specific composition of the BOF is crucial, its formulation is often inherited from similar organisms due to the experimental challenges associated with its proper determination. A cell's macro-molecular composition is not fixed and it responds to changes in environmental conditions. As a consequence, initiatives for the high-fidelity determination of cellular biomass composition have been launched. Thus, there is a need for a mathematical and computational framework capable of using multiple measurements of cellular biomass composition in different environments. Here, we propose two different computational approaches for directly addressing this challenge: Biomass Trade-off Weighting (BTW) and Higher-dimensional-plane InterPolation (HIP). In lieu of experimental data on biomass composition-variation in response to changing nutrient environment, we assess the properties of BTW and HIP using three hypothetical, yet biologically plausible, BOFs for the Escherichia coli genome-scale metabolic model iML1515. We find that the BTW and HIP formulations have a significant impact on model performance and phenotypes. Furthermore, the BTW method generates larger growth rates in all environments when compared to HIP. Using acetate secretion and the respiratory quotient as proxies for phenotypic changes, we find marked differences between the methods as HIP generates BOFs more similar to a reference BOF than BTW. We conclude that the presented methods constitute a conceptual step in developing genome-scale metabolic modelling approaches capable of addressing the inherent dependence of cellular biomass composition on nutrient environments.


Subject(s)
Biomass , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Biological , Acetates/metabolism , Carbon/metabolism , Computational Biology , Escherichia coli/growth & development , Gene-Environment Interaction , Genome, Bacterial , Metabolic Networks and Pathways/genetics , Nitrogen/metabolism , Phenotype
6.
BMC Bioinformatics ; 19(1): 467, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30514205

ABSTRACT

BACKGROUND: Constraint-based modeling is a widely used and powerful methodology to assess the metabolic phenotypes and capabilities of an organism. The starting point and cornerstone of all such modeling is a genome-scale metabolic network reconstruction. The creation, further development, and application of such networks is a growing field of research thanks to a plethora of readily accessible computational tools. While the majority of studies are focused on single-species analyses, typically of a microbe, the computational study of communities of organisms is gaining attention. Similarly, reconstructions that are unified for a multi-cellular organism have gained in popularity. Consequently, the rapid generation of genome-scale metabolic reconstructed networks is crucial. While multiple web-based or stand-alone tools are available for automated network reconstruction, there is, however, currently no publicly available tool that allows the swift assembly of draft reconstructions of community metabolic networks and consolidated metabolic networks for a specified list of organisms. RESULTS: Here, we present AutoKEGGRec, an automated tool that creates first draft metabolic network reconstructions of single organisms, community reconstructions based on a list of organisms, and finally a consolidated reconstruction for a list of organisms or strains. AutoKEGGRec is developed in Matlab and works seamlessly with the COBRA Toolbox v3, and it is based on only using the KEGG database as external input. The generated first draft reconstructions are stored in SBML files and consist of all reactions for a KEGG organism ID and corresponding linked genes. This provides a comprehensive starting point for further refinement and curation using the host of COBRA toolbox functions or other preferred tools. Through the data structures created, the tool also facilitates a comparative analysis of metabolic content in any given number of organisms present in the KEGG database. CONCLUSION: AutoKEGGRec provides a first step in a metabolic network reconstruction process, filling a gap for tools creating community and consolidated metabolic networks. Based only on KEGG data as external input, the generated reconstructions consist of data with a directly traceable foundation and pedigree. With AutoKEGGRec, this kind of modeling is made accessible to a wider part of the genome-scale metabolic analysis community.


Subject(s)
Computational Biology/methods , Genome/genetics , Metabolic Networks and Pathways/genetics , Databases, Genetic , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL
...