Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 51(1): 199-208, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33782851

ABSTRACT

The input of acidity to Swedish forest soils through forestry between 1955 and 2010 is compared with the acid input from atmospheric deposition. Depending on region, input of acidity from forestry was the minor part (25-45%) of the study period's accumulated acid input but is now the dominating source (140-270 molc ha-1 year-1). The net uptake of cations due to the increase in standing forest biomass, ranged between 35 and 45% of the forestry related input of acidity while whole-tree harvesting, introduced in the late 1990s, contributed only marginally (< 2%). The geographical gradient in acid input is reflected in the proportion of acidified soils in Sweden but edaphic properties contribute to variations in acidification sensitivity. It is important to consider the acid input due to increases in standing forest biomass in acidification assessments since it is long-term and quantitatively important.


Subject(s)
Environmental Monitoring , Soil , Biomass , Forests , Sweden , Trees
2.
Ecol Lett ; 24(7): 1341-1351, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33934481

ABSTRACT

Boreal forest soils are important global carbon sinks, with significant storage in the organic topsoil. Decomposition of these stocks requires oxidative enzymes, uniquely produced by fungi. Across Swedish boreal forests, we found that local carbon storage in the organic topsoil was 33% lower in the presence of a group of closely related species of ectomycorrhizal fungi - Cortinarius acutus s.l.. This observation challenges the prevailing view that ectomycorrhizal fungi generally act to increase carbon storage in soils but supports the idea that certain ectomycorrhizal fungi can complement free-living decomposers, maintaining organic matter turnover, nutrient cycling and tree productivity under nutrient-poor conditions. The indication that a narrow group of fungi may exert a major influence on carbon cycling questions the prevailing dogma of functional redundancy among microbial decomposers. Cortinarius acutus s.l. responds negatively to stand-replacing disturbance, and associated population declines are likely to increase soil carbon sequestration while impeding long-term nutrient cycling.


Subject(s)
Mycorrhizae , Taiga , Carbon , Carbon Sequestration , Cortinarius , Forests , Fungi , Soil , Soil Microbiology , Sweden
3.
J Environ Manage ; 286: 112154, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33609929

ABSTRACT

Biochar has been recognised as a carbon dioxide removal (CDR) technology. Unlike other CDR technologies, biochar is expected to deliver various valuable effects in e.g. agriculture, animal husbandry, industrial processes, remediation activities and waste management. The diversity of biochar side effects to CDR makes the systematic environmental assessment of biochar projects challenging, and to date, there is no common framework for evaluating them. Our aim is to bridge the methodology gap for evaluating biochar systems from a life-cycle perspective. Using life cycle theory, actual biochar projects, and reviews of biochar research, we propose a general description of biochar systems, an overview of biochar effects, and an evaluation framework for biochar effects. The evaluation framework was applied to a case study, the Stockholm Biochar Project. In the framework, biochar effects are classified according to life cycle stage and life cycle effect type; and the biochar's end-of-life and the reference situations are made explicit. Three types of effects are easily included in life cycle theory: changes in biosphere exchanges, technosphere inputs, and technosphere outputs. For other effects, analysing the cause-effect chain may be helpful. Several biochar effects in agroecosystems can be modelled as future productivity increases against a reference situation. In practice, the complexity of agroecosystems can be bypassed by using empirical models. Existing biochar life cycle studies are often limited to carbon footprint calculations and quantify a limited amount of biochar effects, mainly carbon sequestration, energy displacements and fertiliser-related emissions. The methodological development in this study can be of benefit to the biochar and CDR research communities, as well as decision-makers in biochar practice and policy.


Subject(s)
Charcoal , Soil , Agriculture , Carbon Sequestration
4.
Environ Sci Technol ; 53(14): 8466-8476, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31268319

ABSTRACT

Several cities in Sweden are aiming for climate neutrality within a few decades and for negative emissions thereafter. Combined biochar, heat, and power production is an option to achieve carbon sequestration for cities relying on biomass-fuelled district heating, while biochar use could mitigate environmental pollution and greenhouse gas emissions from the agricultural sector. By using prospective life cycle assessment, the climate impact of the pyrolysis of woodchips in Stockholm is compared with two reference scenarios based on woodchip combustion. The pyrolysis of woodchips produces heat and power for the city of Stockholm, and biochar whose potential use as a feed and manure additive on Swedish dairy farms is explored. The climate change mitigation trade-off between bioenergy production and biochar carbon sequestration in Stockholm's context is dominated by the fate of marginal power. If decarbonisation of power is achieved, building a new pyrolysis plant becomes a better climate option than conventional combustion. Effects of cascading biochar use in animal husbandry are uncertain but could provide 10-20% more mitigation than direct biochar soil incorporation. These results help design regional biochar systems that combine negative carbon dioxide emissions with increased methane and nitrous oxide mitigation efforts and can also guide the development of minimum performance criteria for biochar products.


Subject(s)
Carbon Sequestration , Charcoal , Carbon Dioxide , Nitrous Oxide , Prospective Studies , Soil , Sweden
5.
New Phytol ; 221(3): 1492-1502, 2019 02.
Article in English | MEDLINE | ID: mdl-30281792

ABSTRACT

Boreal forest soils retain significant amounts of carbon (C) and nitrogen (N) in purely organic layers, but the regulation of organic matter turnover and the relative importance of leaf litter and root-derived inputs are not well understood. We combined bomb 14 C dating of organic matter with stable isotope profiling for Bayesian parameterization of an organic matter sequestration model. C and N dynamics were assessed across annual depth layers (cohorts), together representing 256 yr of organic matter accumulation. Results were related to ecosystem fertility (soil inorganic N, pH and litter C : N). Root-derived C was estimated to decompose two to 10 times more slowly than leaf litter, but more rapidly in fertile plots. The amounts of C and N per cohort declined during the initial 20 yr of decomposition, but, in older material, the amount of N per cohort increased, indicating N retention driven by root-derived C. The dynamics of root-derived inputs were more important than leaf litter dynamics in regulating the variation in organic matter accumulation along a forest fertility gradient. N retention in the rooting zone combined with impeded mining for N in less fertile ecosystems provides evidence for a positive feedback between ecosystem fertility and organic matter turnover.


Subject(s)
Carbon Sequestration/drug effects , Forests , Nitrogen/pharmacology , Plant Roots/physiology , Soil/chemistry , Isotopes , Linear Models , Plant Leaves/physiology , Plant Roots/drug effects
6.
Ecol Lett ; 20(12): 1546-1555, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29057614

ABSTRACT

Plant-soil interactions link ecosystem fertility and organic matter accumulation below ground. Soil microorganisms play a central role as mediators of these interactions, but mechanistic understanding is still largely lacking. Correlative data from a coniferous forest ecosystem support the hypothesis that interactions between fungal guilds play a central role in regulating organic matter accumulation in relation to fertility. With increasing ecosystem fertility, the proportion of saprotrophic basidiomycetes increased in deeper organic layers, at the expense of ectomycorrhizal fungal species. Saprotrophs correlated positively with the activity of oxidative enzymes, which in turn favoured organic matter turnover and nitrogen recycling to plants. Combined, our findings are consistent with a fungus-mediated feedback loop, which results in a negative correlation between ecosystem fertility and below-ground carbon storage. These findings call for a shift in focus from plant litter traits to fungal traits in explaining organic matter dynamics and ecosystem fertility in boreal forests.


Subject(s)
Ecosystem , Mycobiome , Taiga , Fertility , Forests , Mycorrhizae , Soil , Soil Microbiology
7.
ISME J ; 11(4): 863-874, 2017 04.
Article in English | MEDLINE | ID: mdl-28085155

ABSTRACT

Forestry reshapes ecosystems with respect to tree age structure, soil properties and vegetation composition. These changes are likely to be paralleled by shifts in microbial community composition with potential feedbacks on ecosystem functioning. Here, we assessed fungal communities across a chronosequence of managed Pinus sylvestris stands and investigated correlations between taxonomic composition and extracellular enzyme activities. Not surprisingly, clear-cutting had a negative effect on ectomycorrhizal fungal abundance and diversity. In contrast, clear-cutting favoured proliferation of saprotrophic fungi correlated with enzymes involved in holocellulose decomposition. During stand development, the re-establishing ectomycorrhizal fungal community shifted in composition from dominance by Atheliaceae in younger stands to Cortinarius and Russula species in older stands. Late successional ectomycorrhizal taxa correlated with enzymes involved in mobilisation of nutrients from organic matter, indicating intensified nutrient limitation. Our results suggest that maintenance of functional diversity in the ectomycorrhizal fungal community may sustain long-term forest production by retaining a capacity for symbiosis-driven recycling of organic nutrient pools.


Subject(s)
Basidiomycota/classification , Forestry , Pinus sylvestris/microbiology , Soil Microbiology , Basidiomycota/enzymology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Mycorrhizae/classification , Pinus sylvestris/physiology , Soil/chemistry , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...