Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36365587

ABSTRACT

The material properties and processing of investment casting patterns manufactured using conventional wax injection Molding and those manufactured by vat photopolymerization can be substantially different in terms of thermal expansion and mechanical properties, which can generate problems with dimensional accuracy and stability before and during ceramic shelling and shell failures during the burn-out of the 3D printed casting patterns. In this paper and for the first time, the monofunctional Acryloyl morpholine monomer was used for 3D printing of casting patterns, due to its thermoplastic-like behavior, e.g., softening by heat. However, the hydrophilic behavior of this polymer led to an incorporation of up to 60 wt% of Hexanediol diacrylate, to control the water absorption of the network, which to some extent, compromised the softening feature of Acryloyl morpholine. Addition of a powdered wax filler resulted in a delayed thermal decomposition of the polymer network, however, it helped to reduce the thermal expansion of the parts. The dimensional accuracy and stability of the wax-filled formulation indicated an excellent dimensional tolerance of less than ±130 µm. Finally, the 3D printed patterns successfully went through a burn out process with no damages to the ceramic shell.

2.
Polymers (Basel) ; 14(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35893951

ABSTRACT

In the vat photopolymerisation 3D printing technique, the properties of the printed parts are highly dependent on the degree of conversion of the monomers. The mechanisms and advantages of vat photopolymerisation at elevated temperatures, or so called "hot lithography", were investigated in this paper. Two types of photoresins, commercially used as highly accurate castable resins, with different structural and diluent monomers, were employed in this study. Samples were printed at 25 °C, 40 °C, and 55 °C. The results show that hot lithography can significantly enhance the mechanical and dimensional properties of the printed parts and is more effective when there is a diluent with a network Tg close to the print temperature. When processed at 55 °C, Mixture A, which contains a diluent with a network Tg = 53 °C, was more readily impacted by heat compared to Mixture B, whose diluent had a network Tg = 105. As a result, a higher degree of conversion, followed by an increased Tg of the diluents, and improvements in the tensile strength and dimensional stability of the printed parts were observed, which enhanced the outcomes of the prints for the intended application in investment casting of complex components used in the aero and energy sectors. In conclusion, the effectiveness of the hot lithography process is contained by a correlation between the process temperature and the characteristics of the monomers in the mixture.

3.
Polymers (Basel) ; 12(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708360

ABSTRACT

Epoxy-based blends printable in a Liquid Crystal Display (LCD) printer were studied. Diglycidyl ether of bisphenol A (DGEBA) mixed with Diethyltoluene diamine (DETDA) was used due to the easy processing in liquid form at room temperature and slower reactivity until heated over 150 ° C. The DGEBA/DETDA resin was mixed with a commercial daylight photocurable resin used for LCD screen 3D printing. Calorimetric, dynamic mechanical and rheology testing were carried out on the resulting blends. The daylight resins showed to be thermally curable. Resin's processability in the LCD printer was evaluated for all the blends by rheology and by 3D printing trials. The best printing conditions were determined by a speed cure test. The use of a thermal post-curing cycle after the standard photocuring in the LCD printer enhanced the glass transition temperature T g of the daylight resin from 45 to 137 ° C when post-curing temperatures up to 180 ° C were used. The T g reached a value of 174 ° C mixing 50 wt% of DGEBA/DETDA resin with the photocurable resin when high temperature cure cycle was used.

SELECTION OF CITATIONS
SEARCH DETAIL
...