Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(5): 3321-3334, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38249664

ABSTRACT

Photodynamic therapy (PDT) is a well-established cancer treatment method that employs light to generate reactive oxygen species (ROS) causing oxidative damage to cancer cells. Nevertheless, PDT encounters challenges due to its oxygen-dependent nature, which makes it less effective in hypoxic tumor environments. To address this issue, we have developed a novel nanocomposite known as AuNC@BBR@Ghost. This nanocomposite combines the advantageous features of erythrocyte ghost membranes, the photoresponsive properties of gold nanoclusters (AuNC) and the anticancer characteristics of Berberine (BBR) for cancer treatment. Our synthesized AuNC efficiently produce ROS, with a 25% increase in efficiency when exposed to near-infrared (NIR) irradiation. By harnessing the oxygen-carrying capacity of erythrocyte ghost cells, AuNC@BBR@Ghost demonstrates a significant improvement in ROS generation, achieving an 80% efficiency. Furthermore, the AuNC exhibit tunable emission wavelengths due to their excellent fluorescent properties. In normoxic conditions, treatment of A549 lung carcinoma cells with AuNC@BBR@Ghost followed by exposure to 808 nm NIR irradiation results in a notable increase in intracellular ROS levels, accelerating cell death. In hypoxic conditions, when A549 cells were treated with AuNC@BBR@Ghost, the erythrocyte ghost acted as an oxygen supplement due to the residual hemoglobin, alleviating hypoxia and enhancing the nanocomposite's sensitivity to PDT treatment. Thus, the AuNC@BBR@Ghost nanocomposite achieves an improved effect by combining the advantageous properties of its individual components, resulting in enhanced ROS generation and adaptability to hypoxic conditions. This innovative approach successfully overcomes PDT's limitations, making AuNC@BBR@Ghost a promising nanotheranostic agent with significant potential for advanced cancer therapy.

2.
J Biophotonics ; 15(3): e202100264, 2022 03.
Article in English | MEDLINE | ID: mdl-34784104

ABSTRACT

Gold nanostar (AuNSt) has gained great attention in bioimaging and cancer therapy due to their tunable surface plasmon resonance across the visible-near infrared range. Photothermal treatment and imaging capabilities including fluorescence lifetime imaging at two-photon excitation (TP-FLIM) and dark-field microscopic imaging are considered in this work. Two types of AuNSts having plasmon absorption peaks centred at 600 and 750 nm wavelength were synthesized and studied. Both NSts exhibited low cytotoxicity on A549 human lung carcinoma cells. A strong emission at two-photon excitation was observed for both NSts, well-distinguishable from lifetimes of bio-object autofluorescence. High efficiency in raising the temperature in the NSts environment with the irradiation of near infrared, AuNSts triggered photothermal effect. The decreased cell viability of A549 observed via MTT test and the cell membrane damaging was demonstrated with trypan blue staining. These results suggest AuNSts can be agents with tunable plasmonic properties for imaging and photothermal therapy.


Subject(s)
Metal Nanoparticles , Neoplasms , Cell Survival , Gold/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Optical Imaging , Phototherapy , Surface Plasmon Resonance/methods
3.
ACS Omega ; 5(21): 12527-12538, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32548437

ABSTRACT

Fluorescent particle tracking is a powerful technique for studying intracellular transport and microrheological properties within living cells, which in most cases employs exogenous fluorescent tracer particles delivered into cells or fluorescent staining of cell organelles. Herein, we propose an alternative strategy, which is based on the generation of fluorescent species in situ with ultrashort laser pulses. Using mouse germinal vesicle oocytes as a model object, we demonstrate that femtosecond laser irradiation produces compact dense areas in the intracellular material containing fluorescent carbon dots synthesized from biological molecules. These dots have tunable persistent and excitation-dependent emission, which is highly advantageous for fluorescent imaging. We further show that tight focusing and tuning of irradiation parameters allow precise control of the location and size of fluorescently labeled areas and minimization of damage inflicted to cells. Pieces of the intracellular material down to the submicrometer size can be labeled with laser-produced fluorescent dots in real time and then employed as probes for detecting intracellular motion activity via fluorescent tracking. Analyzing their diffusion in the oocyte cytoplasm, we arrive to realistic characteristics of active forces generated within the cell and frequency-dependent shear modulus of the cytoplasm. We also quantitatively characterize the level of metabolic activity and density of the cytoskeleton meshwork. Our findings establish a new technique for probing intracellular mechanical properties and also promise applications in tracking individual cells in population or studies of spatiotemporal cell organization.

4.
Sci Rep ; 9(1): 6636, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036868

ABSTRACT

Laser based spectroscopic methods can be versatile tools in investigating early stage mammalian embryo structure and biochemical processes in live oocytes and embryos. The limiting factor for using the laser methods in embryological studies is the effect of laser irradiation on the ova. The aim of this work is to explore the optimal parameters of the laser exposure in Raman spectroscopic measurements applicable for studying live early embryos in vitro without impacting their developmental capability. Raman spectra from different areas of mouse oocytes and 2-cells embryos were measured and analyzed. The laser power and exposure time were varied and further embryo development was evaluated to select optimal conditions of the measurements. This work demonstrates safe laser irradiation parameters can be selected, which allow acquisition of Raman spectra suitable for further analysis without affecting the early mouse embryo development in vitro up to morphologically normal blastocyst. The estimation of living embryo state is demonstrated via analysis and comparison of the spectra from fertilized embryo with the spectra from unfertilized oocytes or embryos subjected to UV laser irradiation. These results demonstrate the possibility of investigating preimplantation mammalian embryo development and estimating its state/quality. It will have potential in developing prognosis of mammalian embryos in assisted reproductive technologies.


Subject(s)
Blastocyst/radiation effects , Embryo, Mammalian/radiation effects , Oocytes/radiation effects , Spectrum Analysis, Raman/methods , Animals , Embryonic Development/radiation effects , Female , Male , Mice , Mice, Inbred C57BL , Ultraviolet Rays
5.
J Biomed Opt ; 19(7): 71409, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24615672

ABSTRACT

Strong light scattering in tissues and blood reduces the usability of many optical techniques. By reducing scattering, optical clearing enables deeper light penetration and improves resolution in several optical imaging applications. We demonstrate the usage of optical tweezers and elastic light scattering to study optical clearing [one of the major mechanisms-matching of refractive indices (RIs)] at the single particle and cell level. We used polystyrene spheres and human red blood cells (RBCs) as samples and glycerol or glucose water solutions as clearing agents. Optical tweezers kept single microspheres and RBCs in place during the measurement of light scattering patterns. The results show that optical clearing reduces the scattering cross section and increases g. Glucose also decreased light scattering from a RBC. Optical clearing affected the anisotropy factor g of 23.25-µm polystyrene spheres, increasing it by 0.5% for an RI change of 2.2% (20% glycerol) and 0.3% for an RI change of 1.1% (13% glucose).


Subject(s)
Optical Tweezers , Optics and Photonics , Anisotropy , Elasticity , Erythrocytes/pathology , Glucose/chemistry , Glycerol/chemistry , Humans , Lasers , Light , Microscopy/methods , Microspheres , Optical Imaging , Polystyrenes/chemistry , Scattering, Radiation , Tomography, Optical Coherence/methods , Water/chemistry
6.
Mol Reprod Dev ; 76(10): 975-83, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19504565

ABSTRACT

A high repetition rate (80 MHz) picosecond pulse (approximately 2 psec) infrared laser was used for the inactivation (functional enucleation) of oocytes and two-cell mouse embryos and also for the fusion of blastomeres of two-cell mouse embryos. The laser inactivation of both blastomeres of two-cell mouse embryos by irradiation of nucleoli completely blocked further development of the embryo. The inactivation of one blastomere, however, did not affect the ability of the second intact blastomere to develop into a blastocyst after treatment. Laser inactivation of oocytes at Metaphase II (MII) stage and parthenogenetically activated pronuclear oocytes also completely blocked their ability for further development. Suitable doses of irradiation in cytoplasm region did not affect the ability of embryos and activated oocytes to development. The efficiency of laser induced fusion for blastomeres of two-cell embryos was 66.7% and all the tetraploid embryos developed successfully into blastocysts in culture. Our results demonstrate unique opportunities of the applications of a suitable infrared periodic pulse laser as a universal microsurgery tool for individual living cells.


Subject(s)
Blastomeres/physiology , Embryo, Mammalian/physiology , Embryology/methods , Infrared Rays , Lasers , Oocytes/physiology , Animals , Cell Culture Techniques , Cell Nucleus/physiology , Female , Metaphase , Mice , Mice, Inbred C57BL , Microsurgery
SELECTION OF CITATIONS
SEARCH DETAIL
...