Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrJ ; 6(Pt 2): 317-330, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30867929

ABSTRACT

Mammalian fetuin-A and fetuin-B are abundant serum proteins with pleiotropic functions. Fetuin-B is a highly selective and potent inhibitor of metallo-peptidases (MPs) of the astacin family, which includes ovastacin in mammals. By inhibiting ovastacin, fetuin-B is essential for female fertility. The crystal structure of fetuin-B was determined unbound and in complex with archetypal astacin, and it was found that the inhibitor has tandem cystatin-type modules (CY1 and CY2). They are connected by an exposed linker with a rigid, disulfide-linked 'CPDCP-trunk', and are followed by a C-terminal region (CTR) with little regular secondary structure. The CPDCP-trunk and a hairpin of CY2 form a bipartite wedge, which slots into the active-site cleft of the MP. These elements occupy the nonprimed and primed sides of the cleft, respectively, but spare the specificity pocket so that the inhibitor is not cleaved. The aspartate in the trunk blocks the catalytic zinc of astacin, while the CY2 hairpin binds through a QWVXGP motif. The CY1 module assists in structural integrity and the CTR is not involved in inhibition, as verified by in vitro studies using a cohort of mutants and variants. Overall, the inhibition conforms to a novel 'raised-elephant-trunk' mechanism for MPs, which is reminiscent of single-domain cystatins that target cysteine peptidases. Over 200 sequences from vertebrates have been annotated as fetuin-B, underpinning its ubiquity and physiological relevance; accordingly, sequences with conserved CPDCP- and QWVXGP-derived motifs have been found from mammals to cartilaginous fishes. Thus, the raised-elephant-trunk mechanism is likely to be generally valid for the inhibition of astacins by orthologs of fetuin-B.

2.
Sci Rep ; 9(1): 546, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679641

ABSTRACT

Vertebrate fetuins are multi-domain plasma-proteins of the cystatin-superfamily. Human fetuin-A is also known as AHSG, α2-Heremans-Schmid-glycoprotein. Gene-knockout in mice identified fetuin-A as essential for calcified-matrix-metabolism and bone-mineralization. Fetuin-B deficient mice, on the other hand, are female infertile due to zona pellucida 'hardening' caused by the metalloproteinase ovastacin in unfertilized oocytes. In wildtype mice fetuin-B inhibits the activity of ovastacin thus maintaining oocytes fertilizable. Here we asked, if fetuins affect further proteases as might be expected from their evolutionary relation to single-domain-cystatins, known as proteinase-inhibitors. We show that fetuin-A is not an inhibitor of any tested protease. In stark contrast, the closely related fetuin-B selectively inhibits astacin-metalloproteinases such as meprins and ovastacin, but not astacins of the tolloid-subfamily, nor any other proteinase. The analysis of fetuin-B expressed in various mammalian cell types, insect cells, and truncated fish-fetuin expressed in bacteria, showed that the cystatin-like domains alone are necessary and sufficient for inhibition. This report highlights fetuin-B as a specific antagonist of ovastacin and meprin-metalloproteinases. Control of ovastacin was shown to be indispensable for female fertility. Meprin inhibition, on the other hand, renders fetuin-B a potential key-player in proteolytic networks controlling angiogenesis, immune-defense, extracellular-matrix-assembly and general cell-signaling, with implications for inflammation, fibrosis, neurodegenerative disorders and cancer.


Subject(s)
Fetuin-B/metabolism , Mammals/blood , Metalloendopeptidases/metabolism , Metalloproteases/metabolism , Plasma/metabolism , Animals , Astacoidea , Cattle , Fertilization/physiology , Fibrinolysin/metabolism , Glycosylation , Humans , Matrix Metalloproteinase 9/metabolism , Metalloproteases/antagonists & inhibitors , Mice , Proteolysis , Recombinant Proteins/metabolism , alpha-2-HS-Glycoprotein/metabolism
3.
Mol Hum Reprod ; 23(9): 607-616, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28911209

ABSTRACT

STUDY QUESTION: How and where is pro-ovastacin activated and how does active ovastacin regulate zona pellucida hardening (ZPH) and successful fertilization? STUDY FINDING: Ovastacin is partially active before exocytosis and pre-hardens the zona pellucida (ZP) before fertilization. WHAT IS KNOWN ALREADY: The metalloproteinase ovastacin is stored in cortical granules, it cleaves zona pellucida protein 2 (ZP2) upon fertilization and thereby destroys the ZP sperm ligand and triggers ZPH. Female mice deficient in the extracellular circulating ovastacin-inhibitor fetuin-B are infertile due to pre-mature ZPH. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: We isolated oocytes from wild-type and ovastacin-deficient (Astlnull) FVB mice before and after fertilization (in vitro and in vivo) and quantified ovastacin activity and cleavage of ZP2 by immunoblot. We assessed ZPH by measuring ZP digestion time using α-chymotrypsin and by determining ZP2 cleavage. We determined cellular distribution of ovastacin by immunofluorescence using domain-specific ovastacin antibodies. Experiments were performed at least in triplicate with a minimum of 20 oocytes. Data were pre-analyzed using Shapiro-Wilk test. In case of normal distribution, significance was determined via two-sided Student's t-test, whereas in case of non-normal distribution via Mann-Whitney U-test. MAIN RESULTS AND THE ROLE OF CHANCE: Metaphase II (MII) oocytes contained both inactive pro-ovastacin and activated ovastacin. Immunoblot and ZP digestion assays revealed a partial cleavage of ZP2 even before fertilization in wild-type mice. Partial cleavage coincided with germinal-vesicle breakdown and MII, despite the presence of fetuin-B protein, an endogenous ovastacin inhibitor, in the follicular and oviductal fluid. Upon exocytosis, part of the C-terminal domain of ovastacin remained attached to the plasmalemma, while the N-terminal active ovastacin domain was secreted. This finding may resolve previously conflicting data showing that ovastacin acts both as an oolemmal receptor termed SAS1B (sperm acrosomal SLLP1 binding protein; SLLP, sperm lysozyme like protein) and a secreted protease mediating ZP2 cleavage. LIMITATIONS, REASONS FOR CAUTION: For this study, only oocytes isolated from wild-type and ovastacin-deficient FVB mice were investigated. Some experiments involved oocyte activation by the Ca2+ ionophore A23187 to trigger ZPH. WIDER IMPLICATIONS OF THE FINDINGS: This study provides a detailed spatial and temporal view of pre-mature cleavage of ZP2 by ovastacin, which is known to adversely affect IVF rate in mice and humans. LARGE SCALE DATA: None. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported by the Center of Natural Sciences and Medicine and by a start-up grant of the Johannes Gutenberg University Mainz to W.S., and by a grant from Deutsche Forschungsgemeinschaft and by the START program of the Medical Faculty of RWTH Aachen University to J.F. and W.J.D. There are no competing interests to declare.


Subject(s)
Fetuin-B/genetics , Metalloproteases/genetics , Oocytes/metabolism , Zona Pellucida Glycoproteins/genetics , Zona Pellucida/metabolism , Animals , Chymotrypsin/chemistry , Exocytosis , Female , Fertilization in Vitro , Fetuin-B/metabolism , Gene Expression Regulation, Developmental , Male , Metalloproteases/metabolism , Metaphase , Mice , Oocytes/cytology , Oocytes/growth & development , Primary Cell Culture , Proteolysis , Signal Transduction , Spermatozoa/cytology , Spermatozoa/physiology , Zona Pellucida Glycoproteins/metabolism
4.
Curr Protoc Protein Sci ; 83: 21.16.1-21.16.20, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26836407

ABSTRACT

Substrate cleavage by metalloproteinases involves nucleophilic attack on the scissile peptide bond by a water molecule that is polarized by a catalytic metal, usually a zinc ion, and a general base, usually the carboxyl group of a glutamic acid side chain. The zinc ion is most often complexed by imidazole nitrogens of histidine side chains. This arrangement suggests that the physiological pH optimum of most metalloproteinases is in the neutral range. In addition to their catalytic metal ion, many metalloproteinases contain additional transition metal or alkaline earth ions, which are structurally important or modulate the catalytic activity. As a consequence, these enzymes are generally sensitive to metal chelators. Moreover, the catalytic metal can be displaced by adventitious metal ions from buffers or biological fluids, which may fundamentally alter the catalytic function. Therefore, handling, purification, and assaying of metalloproteinases require specific precautions to warrant their stability.


Subject(s)
Glutamic Acid/chemistry , Metalloproteases/chemistry , Zinc/chemistry , Animals , Catalysis , Glutamic Acid/metabolism , Humans , Hydrogen-Ion Concentration , Metalloproteases/metabolism , Zinc/metabolism
5.
Biol Chem ; 395(10): 1195-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25205729

ABSTRACT

The zona pellucida, a glycoprotein matrix surrounding the mammalian oocyte, hardens after intrusion of the first spermatozoon, thus protecting the embryo until implantation and preventing multiple fertilizations (polyspermy). Definitive zona hardening is mediated by the metalloprotease ovastacin, which is released from cortical granules of the oocyte upon sperm penetration. However, traces of ovastacin seep from unfertilized eggs to cause zona hardening even in the absence of sperm. These small amounts of protease are inactivated by the plasma protein fetuin-B, thus keeping eggs fertilizable. Once a sperm has penetrated the egg, ovastacin from cortical vesicles overrides fetuin-B and initiates zona hardening.


Subject(s)
Fetuin-B/physiology , Germ Cells/physiology , Metalloproteases/antagonists & inhibitors , Animals , Female , Fertility , Fertilization , Humans , Pregnancy , Sperm-Ovum Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...