Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(6): 110061, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947518

ABSTRACT

In vitro experiments and cryo-EM structures of p97 and its cofactor, Ufd1/Npl4 (UN), elucidated substrate processing. Yet, the structural transitions and the related ATPase cycle upon UN binding remain unresolved. We captured two discrete conformations: One in which D1 protomers are ATP bound, while the D2 subunits are in the ADP state, presumably required for substrate engagement with the D2 pore; and a heterologous nucleotide state within the D1 ring in which only two NTDs are in the "up" ATP state that favors UN binding. Further analysis suggests that initially, UN binds p97's non-symmetrical conformation, this association promotes a structural transition upon which five NTDs shift to an "up" state and are poised to bind ATP. The UBXL domain of Npl4 was captured bound to an NTD in the ADP state, demonstrating a conformation that may provide directionality to incoming substrate and introduce the flexibility needed for substrate processing.

2.
J Immunol ; 205(10): 2583-2594, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33067378

ABSTRACT

Protective MHC class I-dependent immune responses require an overlap between repertoires of proteins directly presented on target cells and cross-presented by professional APC, specifically dendritic cells. How stable proteins that rely on defective ribosomal proteins for direct presentation are captured for cell-to-cell transfer remains enigmatic. In this study, we address this issue using a combination of in vitro (C57BL/6-derived mouse cell lines) and in vivo (C57BL/6 mouse strains) approaches involving stable and unstable versions of OVA model Ags displaying defective ribosomal protein-dependent and -independent Ag presentation, respectively. Apoptosis, but not necrosis, of donor cells was found associated with robust global protein aggregate formation and captured stable proteins permissive for cross-presentation. Potency of aggregates to serve as Ag source was directly demonstrated using polyglutamine-equipped model substrates. Collectively, our data implicate global protein aggregation in apoptotic cells as a mechanism that ensures the overlap between MHC class I epitopes presented directly or cross-presented by APC and demonstrate the unusual ability of dendritic cells to process stable protein aggregates.


Subject(s)
Antigen Presentation , Antigens/immunology , Dendritic Cells/immunology , Peptides/immunology , Protein Aggregates/immunology , Animals , Antigens/genetics , Cell Line , Dendritic Cells/metabolism , Epitopes/immunology , Female , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Mice , Mice, Transgenic , Ovalbumin/genetics , Ovalbumin/immunology , Peptides/metabolism
3.
Elife ; 4: e05914, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25955862

ABSTRACT

Skeletal integrity is maintained by the co-ordinated activity of osteoblasts, the bone-forming cells, and osteoclasts, the bone-resorbing cells. In this study, we show that mice overexpressing galectin-8, a secreted mammalian lectin of the galectins family, exhibit accelerated osteoclasts activity and bone turnover, which culminates in reduced bone mass, similar to cases of postmenopausal osteoporosis and cancerous osteolysis. This phenotype can be attributed to a direct action of galectin-8 on primary cultures of osteoblasts that secrete the osteoclastogenic factor RANKL upon binding of galectin-8. This results in enhanced differentiation into osteoclasts of the bone marrow cells co-cultured with galectin-8-treated osteoblasts. Secretion of RANKL by galectin-8-treated osteoblasts can be attributed to binding of galectin-8 to receptor complexes that positively (uPAR and MRC2) and negatively (LRP1) regulate galectin-8 function. Our findings identify galectins as new players in osteoclastogenesis and bone remodeling, and highlight a potential regulation of bone mass by animal lectins.


Subject(s)
Bone Marrow Cells/metabolism , Bone Resorption/genetics , Bone and Bones/metabolism , Galectins/genetics , Osteoblasts/metabolism , Osteoclasts/metabolism , RANK Ligand/genetics , Animals , Bone Density/genetics , Bone Marrow Cells/cytology , Bone Resorption/metabolism , Bone Resorption/pathology , Bone and Bones/cytology , Coculture Techniques , Female , Galectins/metabolism , Gene Expression Regulation , Low Density Lipoprotein Receptor-Related Protein-1 , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Osteoblasts/cytology , Osteoclasts/cytology , Osteogenesis/genetics , Primary Cell Culture , Protein Binding , RANK Ligand/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...