Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 16(14): 2036-45, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26212347

ABSTRACT

Serine-proteinase-catalyzed peptide splicing was demonstrated in analogues of the trypsin inhibitor SFTI-1: both single peptides and two-peptide chains (C- and N-terminal peptide chains linked by a disulfide bridge). In the second series, peptide splicing with catalytic amount of proteinase was observed only when formation of acyl-enzyme intermediate was preceded by hydrolysis of the substrate Lys-Ser peptide bond. Here we demonstrate that with an equimolar amount of the proteinase, splicing occurs in all the two-peptide-chain analogues. This conclusion was supported by high resolution crystal structures of selected analogues in complex with trypsin. We showed that the process followed a direct transpeptidation mechanism. Thus, the acyl-enzyme intermediate was formed and was immediately used for a new peptide bond formation; products associated with the hydrolysis of the acyl-enzyme were not observed. The peptide splicing was sequence- not structure-specific.


Subject(s)
Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides/metabolism , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/pharmacology , Trypsin/metabolism , Amino Acid Sequence , Animals , Cattle , Crystallography, X-Ray , Helianthus/chemistry , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides, Cyclic/chemical synthesis , Serine Proteases/chemical synthesis , Serine Proteases/chemistry , Serine Proteases/pharmacology , Trypsin/chemistry , Trypsin Inhibitors/chemical synthesis
2.
Chembiochem ; 16(11): 1601-7, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-25999208

ABSTRACT

A series of 17 new analogues of trypsin inhibitor SFTI-1 were designed and synthesized to obtain matriptase-2 inhibitors. A number of the modified bicyclic peptides displayed much higher affinity towards matriptase-2 than towards the highly homologous matriptase-1. Replacement of Lys5 by Arg in the wild-type SFTI-1 led to an 11-fold increase in the matriptase-2 inhibitory activity. Replacement of Arg2 by its enantiomer (D-arginine) slightly lowered the inhibition of matriptase-2, but almost completely abolished the affinity towards matriptase-1, thus yielding the most selective matriptase-2 inhibitor. This is the first report describing inhibitors of the recently discovered matriptase-2 based on the SFTI-1 structure. The results showed that SFTI-1 is a promising scaffold for the design of potent and selective inhibitors of this enzyme.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Trypsin Inhibitors/pharmacology , Amino Acid Sequence , HEK293 Cells , Humans , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Serine Endopeptidases , Trypsin Inhibitors/chemical synthesis , Trypsin Inhibitors/chemistry
3.
Biopolymers ; 104(3): 206-12, 2015 May.
Article in English | MEDLINE | ID: mdl-25904562

ABSTRACT

Recently, we described a process of trypsin-assisted peptide splicing of analogs of trypsin inhibitor SFTI-1, that seems to be very similar to proteasome-catalyzed peptide splicing. Here, we show, for the first time, that a peptide-peptoid hybrid (peptomer) can also be spliced by trypsin. Incubation of a double sequence SFTI-1 analog, containing two peptoid monomers, with equimolar amount of trypsin leads to formation of monocyclic peptomer as the main product. We proved that the peptide bond formed by a peptoid monomer is not only digested by trypsin but also participates in the enzyme-assisted splicing process.


Subject(s)
Peptides, Cyclic/chemistry , Protein Splicing , Trypsin Inhibitors/chemistry , Trypsin/chemistry , Animals , Cattle
4.
Proteins ; 83(3): 582-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25546528

ABSTRACT

Protease inhibitors of the Bowman-Birk (BBI) family are commonly found in plants and animals where they play a protective role against invading pathogens. Here, we report an atomic resolution (1Å) crystal structure of a peptide inhibitor isolated from a skin secretion of a Chinese bamboo odorous frog Huia versabilis (HV-BBI) in complex with trypsin. HV-BBI shares significant similarities in sequence with a previously described inhibitor from a diskless-fingered odorous frog Odorrana graham (ORB). However, the latter is characterized by more than a 16,000 fold higher Ki against trypsin than HV-BBI. Comparative analysis of trypsin cocrystal structures of HV-BBI and ORB and additionally that of Sunflower Trypsin Inhibitor (SFTI-1) together with accessory information on the affinities of inhibitor variants allowed us to pinpoint the inhibitor moiety responsible for the observed large difference in activity and also to define the extent of modifications permissible within the common protease-binding loop scaffold of BBI inhibitors. We suggest that modifications outside of the inhibitory loop permit the evolution of specificity toward different enzymes characterized by trypsin-like specificity.


Subject(s)
Peptides/chemistry , Trypsin/chemistry , Amino Acid Sequence , Animals , Anura , Cattle , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Peptides/metabolism , Skin/chemistry , Trypsin/metabolism
5.
Biopolymers ; 102(1): 124-35, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24272319

ABSTRACT

This article describes the synthesis and enzymatic study of newly synthesized analogs of trypsin inhibitors SFTI-1 that were fluorescent labeled on their N-terminal amino groups. Two fluorescent derivatives of benzoxazole (3-[2-(4-diphenylaminophenyl)benzoxazol-5-yl]-L-alanine-[(4NPh2 )Ph]Box-Ala and 3-[2-(2',4',5'-trimethoxyphenyl)benzoxazol-5-yl]-L-alanine-[2,4,5-(OMe)3Ph]Box-Ala) were used as efficient fluorescent labels. The compounds obtained preserved their inhibitory activity and were efficient inhibitors of bovine trypsin or chymotrypsin. Nevertheless, their association inhibition constants were one or two orders of magnitude lower than those determined for unlabeled monocyclic SFTI-1 or [Phe(5)]SFTI-1, respectively. The conjugates obtained were found to be proteolytically stable in the presence of cognate enzymes. Applying such fluorescent peptides, we were able to investigate enzyme-inhibitor complex formation using fluorescent techniques. We found that such compounds were rapidly internalized by the fibroblast or cancer cells with no cytotoxic effects.


Subject(s)
Helianthus/chemistry , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/isolation & purification , Seeds/chemistry , Trypsin Inhibitors/chemical synthesis , Trypsin Inhibitors/isolation & purification , Amino Acid Sequence , Animals , Benzoxazoles/chemistry , Cattle , Cell Line , Cell Membrane Permeability , Chromatography, Gel , Chromatography, High Pressure Liquid , Flow Cytometry , Fluorescence , Humans , Microscopy, Fluorescence , Molecular Sequence Data , Peptides, Cyclic/chemistry , Time Factors , Trypsin Inhibitors/chemistry
6.
FEBS J ; 280(23): 6213-22, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24112465

ABSTRACT

This study examines peptide splicing catalyzed by serine proteinases. A series of two-peptide-chain analogs of trypsin inhibitor SFTI-1 were designed and synthesized via the solid-phase method. All consisted of two peptide chains (also called N- and C-terminal fragments) joined together by one disulfide bridge. The analogs were incubated with bovine ß-trypsin or bovine α-chymotrypsin. Analysis of MS data analysis showed that, after enzyme-catalyzed degradation of the single peptide bond between the Lys and Ser residues located at the C-terminus of the C-terminal peptide chain, a new peptide bond was formed. This bond brought together the separated peptide chains, and, as a result, monocyclic SFTI-1 was recovered. This proteolytic route of peptide rearrangement appears to be similar to peptide splicing catalyzed by proteasomes. However, the proteasome is much more complex than 'classical' serine proteinases.


Subject(s)
Chymotrypsin/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Trypsin Inhibitors/pharmacology , Trypsin/chemistry , Animals , Cattle , Chymotrypsin/metabolism , Peptide Hydrolases/metabolism , Peptides, Cyclic/chemical synthesis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypsin/metabolism
7.
Peptides ; 35(2): 276-84, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22516177

ABSTRACT

A series of linear and cyclic fragments and analogs of two peptides (OGTI and HV-BBI) isolated from skin secretions of frogs were synthesized by the solid-phase method. Their inhibitory activity against several serine proteinases: bovine ß-trypsin, bovine α-chymotypsin, human leukocyte elastase and cathepsin G from human neutrophils, was investigated together with evaluation of their antimicrobial activities against Gram-negative bacteria (Escherichia coli) and Gram-positive species isolated from patients (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus sp., Streptococcus sp.). The cytotoxicity of the selected peptides toward an immortal human skin fibroblast cell line was also determined. Three peptides: HV-BBI, its truncated fragment HV-BBI(3-18) and its analog [Phe(8)]HV-BBI can be considered as bifunctional compounds with inhibitory as well as antibacterial properties. OGTI, although it did not display trypsin inhibitory activity as previously reported in the literature, exerted antimicrobial activity toward S. epidermidis. In addition, under our experimental conditions, this peptide did not show cytotoxicity.


Subject(s)
Amphibian Proteins/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Peptides/pharmacology , Amphibian Proteins/chemistry , Amphibian Proteins/toxicity , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/toxicity , Anura , Cathepsin G/antagonists & inhibitors , Cathepsin G/drug effects , Cell Line , Cell Proliferation/drug effects , Chymotrypsin/antagonists & inhibitors , Enterococcus/drug effects , Escherichia coli/drug effects , Humans , Leukocyte Elastase/antagonists & inhibitors , Microbial Sensitivity Tests , Neutrophils/drug effects , Peptides/chemical synthesis , Peptides/chemistry , Peptides/toxicity , Skin/metabolism , Staphylococcus/drug effects , Streptococcus/drug effects , Trypsin/drug effects , Trypsin Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...