Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 315: 116654, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37225028

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The leave paste of the plant, Eupatorium glandulosum H. B & K, has been traditionally used to treat cuts and wounds by the tribal community of the Nilgiris district of Tamilnadu, India. AIM OF THE STUDY: The present study was carried out to investigate the wound healing potential of this plant extract and the compound, 1-Tetracosanol, isolated from the ethyl acetate fraction. MATERIALS AND METHODS: An in vitro study was designed to compare the viability, migration and apoptosis of the fresh methanolic extract fractions and 1-Tetracosanol using mouse fibroblast NIH3T3 cell lines and human keratinocytes HaCaT cell lines, respectively. 1-Tetracosanol was evaluated for its viability, migration, qPCR analysis, in silico, in vitro and in vivo. RESULTS: 1-Tetracosanol at the concentration of 800, 1600, 3200 µM has significant wound closure of 99% at 24 h. The compound when screened in silico against various wound healing markers, TNF-α, IL-12, IL-18, GM-CSF and MMP-9, revealed high binding energy of -5, 4.9 and -6.4 kcal/mol for TNF-α, IL-18 and MMP-9, respectively. Gene expression and the release of cytokines increased at an early stage of the wound repair. 1-Tetracosanol, at 2% gel showed 97.35 ± 2.06% wound closure at 21st day. CONCLUSION: 1-Tetracosanol is a good lead for drug development targeted towards wound healing activity and work in this direction is in progress.


Subject(s)
Cytokines , Eupatorium , Mice , Animals , Humans , Cytokines/metabolism , Interleukin-18/analysis , Matrix Metalloproteinase 9/genetics , Tumor Necrosis Factor-alpha/analysis , NIH 3T3 Cells , Wound Healing , Matrix Metalloproteinases , Plant Leaves/chemistry
2.
Diagnostics (Basel) ; 14(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38201359

ABSTRACT

BACKGROUND: Tuberculosis (TB) is a global health burden caused by Mycobacterium tuberculosis (Mtb) infection. Fibronectin (Fn) facilitates Mtb attachment to host cells. We studied the Fn levels in smear-positive TB patients to assess its correlation with disease severity based on sputum smears and chest X-rays. METHODS: Newly detected consecutive sputum AFB-positive pulmonary TB patients (n = 78) and healthy control subjects (n = 11) were included. The mycobacterial load in the sputum smear was assessed by IUATLD classification, ranging from 0 to 3. The severity of pulmonary involvement was assessed radiologically in terms of both the number of zones involved (0-6) and as localized (up to 2 zones), moderate (3-4 zones), or extensive (5-6 zones). The serum human fibronectin levels were measured by using a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Catalogue No: CK-bio-11486, Shanghai Coon Koon Biotech Co., Ltd., Shanghai, China). RESULTS: The PTB patients showed lower Fn levels (102.4 ± 26.7) compared with the controls (108.8 ± 6.8), but they were not statistically significant. Higher AFB smear grades had lower Fn levels. The chest X-ray zones involved were inversely correlated with Fn levels. The Fn levels, adjusted for age and gender, decreased with increased mycobacterial load and the number of chest radiograph zones affected. A Fn level <109.39 g/mL predicted greater TB severity (sensitivity of 67.57% and specificity of 90.38%), while a level <99.32 pg/mL predicted severity based on the chest radiology (sensitivity of 84.21% and specificity of 100%). CONCLUSIONS: The Fn levels are lower in tuberculosis patients and are negatively correlated with severity based on sputum mycobacterial load and chest radiographs. The Fn levels may serve as a potential biomarker for assessing TB severity, which could have implications for early diagnosis and treatment monitoring.

3.
Biomed Res Int ; 2021: 8160860, 2021.
Article in English | MEDLINE | ID: mdl-34159203

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection causes coronavirus disease-19 (COVID-19), which is characterized by clinical manifestations such as pneumonia, lymphopenia, severe acute respiratory distress, and cytokine storm. S glycoprotein of SARS-CoV-2 binds to angiotensin-converting enzyme II (ACE-II) to enter into the lungs through membrane proteases consequently inflicting the extensive viral load through rapid replication mechanisms. Despite several research efforts, challenges in COVID-19 management still persist at various levels that include (a) availability of a low cost and rapid self-screening test, (b) lack of an effective vaccine which works against multiple variants of SARS-CoV-2, and (c) lack of a potent drug that can reduce the complications of COVID-19. The development of vaccines against SARS-CoV-2 is a complicated process due to the emergence of mutant variants with greater virulence and their ability to invoke intricate lung pathophysiology. Moreover, the lack of a thorough understanding about the virus transmission mechanisms and complete pathogenesis of SARS-CoV-2 is making it hard for medical scientists to develop a better strategy to prevent the spread of the virus and design a clinically viable vaccine to protect individuals from being infected. A recent report has tested the hypothesis of T cell immunity and found effective when compared to the antibody response in agammaglobulinemic patients. Understanding SARS-CoV-2-induced changes such as "Th-2 immunopathological variations, mononuclear cell & eosinophil infiltration of the lung and antibody-dependent enhancement (ADE)" in COVID-19 patients provides key insights to develop potential therapeutic interventions for immediate clinical management. Therefore, in this review, we have described the details of rapid detection methods of SARS-CoV-2 using molecular and serological tests and addressed different therapeutic modalities used for the treatment of COVID-19 patients. In addition, the current challenges against the development of vaccines for SARS-CoV-2 are also briefly described in this article.


Subject(s)
COVID-19 Drug Treatment , COVID-19 Vaccines/immunology , COVID-19/diagnosis , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Drug Development , Humans , Lung/drug effects , Lung/pathology , Lung/virology , Pharmaceutical Preparations/administration & dosage , Viral Load
4.
Mol Neurobiol ; 58(9): 4535-4563, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34089508

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.


Subject(s)
COVID-19 Vaccines , COVID-19/complications , Inflammation/etiology , Neurodevelopmental Disorders/etiology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/physiology , Animals , Antiviral Agents/therapeutic use , COVID-19/physiopathology , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Cell Line , Comorbidity , Cytokine Release Syndrome/etiology , Female , Hormesis , Humans , Immunization, Passive , Infectious Disease Transmission, Vertical , Mice , Models, Neurological , Murine hepatitis virus/pathogenicity , Nervous System/virology , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Organ Specificity , Organoids , Pregnancy , Pregnancy Complications, Infectious/virology , Receptors, Virus/physiology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Serine Endopeptidases/physiology , Spike Glycoprotein, Coronavirus/physiology , COVID-19 Serotherapy , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...