Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Med ; 29(12): 3127-3136, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957373

ABSTRACT

Toll-like receptor-driven and interleukin-1 (IL-1) receptor-driven inflammation mediated by IL-1 receptor-associated kinase 4 (IRAK4) is involved in the pathophysiology of hidradenitis suppurativa (HS) and atopic dermatitis (AD). KT-474 (SAR444656), an IRAK4 degrader, was studied in a randomized, double-blind, placebo-controlled phase 1 trial where the primary objective was safety and tolerability. Secondary objectives included pharmacokinetics, pharmacodynamics and clinical activity in patients with moderate to severe HS and in patients with moderate to severe AD. KT-474 was administered as a single dose and then daily for 14 d in 105 healthy volunteers (HVs), followed by dosing for 28 d in an open-label cohort of 21 patients. Degradation of IRAK4 was observed in HV blood, with mean reductions after a single dose of ≥93% at 600-1,600 mg and after 14 daily doses of ≥95% at 50-200 mg. In patients, similar IRAK4 degradation was achieved in blood, and IRAK4 was normalized in skin lesions where it was overexpressed relative to HVs. Reduction of disease-relevant inflammatory biomarkers was demonstrated in the blood and skin of patients with HS and patients with AD and was associated with improvement in skin lesions and symptoms. There were no drug-related infections. These results, from what, to our knowledge, is the first published clinical trial using a heterobifunctional degrader, provide initial proof of concept for KT-474 in HS and AD to be further confirmed in larger trials. ClinicalTrials.gov identifier: NCT04772885 .


Subject(s)
Dermatitis, Atopic , Hidradenitis Suppurativa , Humans , Hidradenitis Suppurativa/drug therapy , Dermatitis, Atopic/drug therapy , Interleukin-1 Receptor-Associated Kinases , Treatment Outcome , Skin/pathology , Double-Blind Method , Severity of Illness Index
2.
Cell Rep ; 37(6): 109967, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758323

ABSTRACT

Stem and progenitor cells have the capacity to balance self-renewal and differentiation. Hematopoietic myeloid progenitors replenish more than 25 billion terminally differentiated neutrophils every day under homeostatic conditions and can increase this output in response to stress or infection. At what point along the spectrum of maturation do progenitors lose capacity for self-renewal and become irreversibly committed to differentiation? Using a system of conditional myeloid development that can be toggled between self-renewal and differentiation, we interrogate determinants of this "point of no return" in differentiation commitment. Irreversible commitment is due primarily to loss of open regulatory site access and disruption of a positive feedback transcription factor activation loop. Restoration of the transcription factor feedback loop extends the window of cell plasticity and alters the point of no return. These findings demonstrate how the chromatin state enforces and perpetuates cell fate and identify potential avenues for manipulating cell identity.


Subject(s)
Bone Marrow/physiology , Cell Lineage , Chromatin/genetics , Hematopoiesis , Hematopoietic Stem Cells/cytology , Myeloid Cells/cytology , Transcription Factors/metabolism , Animals , Cell Differentiation , Cells, Cultured , Chromatin/metabolism , Female , Gene Expression Profiling , Mice , Transcription Factors/genetics
4.
Elife ; 72018 11 23.
Article in English | MEDLINE | ID: mdl-30468428

ABSTRACT

DNA methylation plays an essential role in mammalian genomes and expression of the responsible enzymes is tightly controlled. Deregulation of the de novo DNA methyltransferase DNMT3B is frequently observed across cancer types, yet little is known about its ectopic genomic targets. Here, we used an inducible transgenic mouse model to delineate rules for abnormal DNMT3B targeting, as well as the constraints of its activity across different cell types. Our results explain the preferential susceptibility of certain CpG islands to aberrant methylation and point to transcriptional state and the associated chromatin landscape as the strongest predictors. Although DNA methylation and H3K27me3 are usually non-overlapping at CpG islands, H3K27me3 can transiently co-occur with DNMT3B-induced DNA methylation. Our genome-wide data combined with ultra-deep locus-specific bisulfite sequencing suggest a distributive activity of ectopically expressed Dnmt3b that leads to discordant CpG island hypermethylation and provides new insights for interpreting the cancer methylome.


Subject(s)
CpG Islands , DNA (Cytosine-5-)-Methyltransferases/biosynthesis , DNA Methylation , Gene Expression , Recombinant Proteins/biosynthesis , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , Embryonic Stem Cells/physiology , Gene Expression Regulation , Humans , Mice, Transgenic , Neoplasms/pathology , Recombinant Proteins/genetics , DNA Methyltransferase 3B
5.
Nucleic Acids Res ; 46(17): 9044-9056, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30102379

ABSTRACT

Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A-ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.


Subject(s)
Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA/chemistry , Epigenesis, Genetic , Histones/genetics , Methyl-CpG-Binding Protein 2/genetics , Allosteric Regulation , Animals , Binding Sites , Brain Chemistry , Chromatin/chemistry , Cloning, Molecular , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Methyltransferase 3A , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Histones/chemistry , Histones/metabolism , Humans , Methyl-CpG-Binding Protein 2/chemistry , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mutagenesis, Site-Directed/methods , Protein Binding , Protein Engineering/methods , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
6.
Stem Cell Reports ; 10(5): 1537-1550, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29681539

ABSTRACT

A dramatic difference in global DNA methylation between male and female cells characterizes mouse embryonic stem cells (ESCs), unlike somatic cells. We analyzed DNA methylation changes during reprogramming of male and female somatic cells and in resulting induced pluripotent stem cells (iPSCs). At an intermediate reprogramming stage, somatic and pluripotency enhancers are targeted for partial methylation and demethylation. Demethylation within pluripotency enhancers often occurs at ESC binding sites of pluripotency transcription factors. Late in reprogramming, global hypomethylation is induced in a female-specific manner. Genome-wide hypomethylation in female cells affects many genomic landmarks, including enhancers and imprint control regions, and accompanies the reactivation of the inactive X chromosome. The loss of one of the two X chromosomes in propagating female iPSCs is associated with genome-wide methylation gain. Collectively, our findings highlight the dynamic regulation of DNA methylation at enhancers during reprogramming and reveal that X chromosome dosage dictates global DNA methylation levels in iPSCs.


Subject(s)
Cellular Reprogramming/genetics , Chromosomes, Mammalian/genetics , DNA Methylation/genetics , Induced Pluripotent Stem Cells/metabolism , X Chromosome/genetics , Animals , Binding Sites , CpG Islands/genetics , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic/genetics , Female , Genome , Genomic Imprinting , Induced Pluripotent Stem Cells/cytology , Male , Mice , Transcription Factors/metabolism
7.
mSystems ; 3(1)2018.
Article in English | MEDLINE | ID: mdl-29435496

ABSTRACT

Zika virus (ZIKV) infection during early pregnancy can cause microcephaly and associated defects at birth, but whether it can induce neurologic sequelae that appear later in life remains unclear. Using a model of the developing brain based on embryonic stem cell-derived brain organoids, we studied the impact of ZIKV infection on the DNA methylation pattern across the entire genome in selected neural cell types. The virus unexpectedly alters the DNA methylome of neural progenitors, astrocytes, and differentiated neurons at genes that have been implicated in the pathogenesis of a number of brain disorders, most prominently mental retardation and schizophrenia. Our results suggest that ZIKV infection during fetal development could lead to a spectrum of delayed-onset neuropsychiatric complications. IMPORTANCE Scientific research on human neural stem cells and cerebral organoids has confirmed the congenital neurotropic and neurodestructive nature of the Zika virus. However, the extent to which prenatal ZIKV infection is associated with more subtle brain alterations, such as epigenetic changes, remains ill defined. Here, we address the question of whether ZIKV infection induces DNA methylation changes with the potential to cause brain disorders later in life.

8.
Nat Genet ; 50(2): 250-258, 2018 02.
Article in English | MEDLINE | ID: mdl-29358654

ABSTRACT

Transcription factors (TFs) direct developmental transitions by binding to target DNA sequences, influencing gene expression and establishing complex gene-regultory networks. To systematically determine the molecular components that enable or constrain TF activity, we investigated the genomic occupancy of FOXA2, GATA4 and OCT4 in several cell types. Despite their classification as pioneer factors, all three TFs exhibit cell-type-specific binding, even when supraphysiologically and ectopically expressed. However, FOXA2 and GATA4 can be distinguished by low enrichment at loci that are highly occupied by these factors in alternative cell types. We find that expression of additional cofactors increases enrichment at a subset of these sites. Finally, FOXA2 occupancy and changes to DNA accessibility can occur in G1-arrested cells, but subsequent loss of DNA methylation requires DNA replication.


Subject(s)
DNA/metabolism , Epigenesis, Genetic/physiology , Gene Regulatory Networks/physiology , Transcription Factors/metabolism , A549 Cells , Binding Sites/genetics , Cell Lineage/drug effects , Cell Lineage/genetics , Cells, Cultured , Computational Biology , DNA/genetics , Epistasis, Genetic/physiology , GATA4 Transcription Factor/metabolism , Gene Expression Regulation , Genes, Switch , HEK293 Cells , Hep G2 Cells , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Octamer Transcription Factor-3/metabolism , Protein Binding
9.
Nature ; 539(7629): 390-395, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27799657

ABSTRACT

Intermediary metabolism generates substrates for chromatin modification, enabling the potential coupling of metabolic and epigenetic states. Here we identify a network linking metabolic and epigenetic alterations that is central to oncogenic transformation downstream of the liver kinase B1 (LKB1, also known as STK11) tumour suppressor, an integrator of nutrient availability, metabolism and growth. By developing genetically engineered mouse models and primary pancreatic epithelial cells, and employing transcriptional, proteomics, and metabolic analyses, we find that oncogenic cooperation between LKB1 loss and KRAS activation is fuelled by pronounced mTOR-dependent induction of the serine-glycine-one-carbon pathway coupled to S-adenosylmethionine generation. At the same time, DNA methyltransferases are upregulated, leading to elevation in DNA methylation with particular enrichment at retrotransposon elements associated with their transcriptional silencing. Correspondingly, LKB1 deficiency sensitizes cells and tumours to inhibition of serine biosynthesis and DNA methylation. Thus, we define a hypermetabolic state that incites changes in the epigenetic landscape to support tumorigenic growth of LKB1-mutant cells, while resulting in potential therapeutic vulnerabilities.


Subject(s)
Cell Transformation, Neoplastic , DNA Methylation , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Animals , Cell Culture Techniques , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , Enzyme Inhibitors/pharmacology , Epithelial Cells/metabolism , Gene Silencing , Genes, Tumor Suppressor , Glycine/metabolism , Glycolysis , Humans , Mice , Pancreatic Ducts/cytology , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Retroelements/genetics , S-Adenosylmethionine/metabolism , Serine/biosynthesis , TOR Serine-Threonine Kinases/metabolism , Transaminases/metabolism
10.
PLoS One ; 10(10): e0140557, 2015.
Article in English | MEDLINE | ID: mdl-26465884

ABSTRACT

The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix) rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs.


Subject(s)
Computational Biology/methods , Regulatory Elements, Transcriptional , Regulatory Sequences, Nucleic Acid , Software , Algorithms , Animals , Binding Sites , Caenorhabditis elegans , Chromatin Immunoprecipitation , Datasets as Topic , High-Throughput Nucleotide Sequencing , Humans , Mice , Nucleotide Motifs , Position-Specific Scoring Matrices , Transcription Factors/metabolism , Yeasts
11.
Cell Rep ; 12(9): 1456-70, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26299972

ABSTRACT

Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency.


Subject(s)
DNA Methylation , Embryonic Stem Cells/metabolism , Genomic Imprinting , Polycomb Repressive Complex 2/metabolism , RNA, Long Noncoding/genetics , Animals , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Mice , MicroRNAs/genetics , Nuclear Proteins/genetics , Polycomb Repressive Complex 2/genetics , Protein Binding
12.
Cell Stem Cell ; 17(4): 462-70, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26235340

ABSTRACT

Mouse embryonic stem cells (mESCs) cultured under serum/LIF conditions exhibit heterogeneous expression of pluripotency-associated factors that can be overcome by two inhibitors (2i) of the MEK and GSK3 pathways. Several studies have shown that the "ground state" induced by 2i is characterized by global hypomethylation and specific transcriptional profiles, but little is known about the contributing effectors. Here we show that 2i conditions rapidly alter the global binding landscape of OCT4, SOX2, and NANOG. The dynamic binding influences enhancer activity and shows enrichment for regulators linked to Wnt and Erk signaling. Epigenomic characterization provided limited insights to the immediate transcriptional dynamics, suggesting that these are likely more secondary effects. Likewise, loss of the PRC2 component EED to prevent H3K27me3 deposition had minimal effect on the transcriptome, implying that it is largely dispensable for continued repression of bivalent genes and de novo silencing in 2i.


Subject(s)
Epigenesis, Genetic , Mouse Embryonic Stem Cells/physiology , Animals , Cells, Cultured , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/genetics , Mice , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Polycomb Repressive Complex 2/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcriptome
13.
Cell ; 162(2): 412-424, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26186193

ABSTRACT

Induced pluripotency is a promising avenue for disease modeling and therapy, but the molecular principles underlying this process, particularly in human cells, remain poorly understood due to donor-to-donor variability and intercellular heterogeneity. Here, we constructed and characterized a clonal, inducible human reprogramming system that provides a reliable source of cells at any stage of the process. This system enabled integrative transcriptional and epigenomic analysis across the human reprogramming timeline at high resolution. We observed distinct waves of gene network activation, including the ordered re-activation of broad developmental regulators followed by early embryonic patterning genes and culminating in the emergence of a signature reminiscent of pre-implantation stages. Moreover, complementary functional analyses allowed us to identify and validate novel regulators of the reprogramming process. Altogether, this study sheds light on the molecular underpinnings of induced pluripotency in human cells and provides a robust cell platform for further studies. PAPERCLIP.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells/cytology , Chromatin/metabolism , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Gene Expression Profiling , Histone Demethylases/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism
14.
Nat Genet ; 47(5): 469-78, 2015 May.
Article in English | MEDLINE | ID: mdl-25822089

ABSTRACT

DNA methylation is a key epigenetic modification involved in regulating gene expression and maintaining genomic integrity. Here we inactivated all three catalytically active DNA methyltransferases (DNMTs) in human embryonic stem cells (ESCs) using CRISPR/Cas9 genome editing to further investigate the roles and genomic targets of these enzymes. Disruption of DNMT3A or DNMT3B individually as well as of both enzymes in tandem results in viable, pluripotent cell lines with distinct effects on the DNA methylation landscape, as assessed by whole-genome bisulfite sequencing. Surprisingly, in contrast to findings in mouse, deletion of DNMT1 resulted in rapid cell death in human ESCs. To overcome this immediate lethality, we generated a doxycycline-responsive tTA-DNMT1* rescue line and readily obtained homozygous DNMT1-mutant lines. However, doxycycline-mediated repression of exogenous DNMT1* initiates rapid, global loss of DNA methylation, followed by extensive cell death. Our data provide a comprehensive characterization of DNMT-mutant ESCs, including single-base genome-wide maps of the targets of these enzymes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Embryonic Stem Cells/enzymology , Animals , Apoptosis , Base Sequence , Catalytic Domain , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Coculture Techniques , CpG Islands , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methyltransferase 3A , Embryonic Stem Cells/physiology , Epigenesis, Genetic , Gene Expression , Gene Knockout Techniques , Humans , Mice , DNA Methyltransferase 3B
15.
Cell ; 159(7): 1681-97, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25525883

ABSTRACT

Reprogramming to iPSCs resets the epigenome of somatic cells, including the reversal of X chromosome inactivation. We sought to gain insight into the steps underlying the reprogramming process by examining the means by which reprogramming leads to X chromosome reactivation (XCR). Analyzing single cells in situ, we found that hallmarks of the inactive X (Xi) change sequentially, providing a direct readout of reprogramming progression. Several epigenetic changes on the Xi occur in the inverse order of developmental X inactivation, whereas others are uncoupled from this sequence. Among the latter, DNA methylation has an extraordinary long persistence on the Xi during reprogramming, and, like Xist expression, is erased only after pluripotency genes are activated. Mechanistically, XCR requires both DNA demethylation and Xist silencing, ensuring that only cells undergoing faithful reprogramming initiate XCR. Our study defines the epigenetic state of multiple sequential reprogramming intermediates and establishes a paradigm for studying cell fate transitions during reprogramming.


Subject(s)
Cellular Reprogramming , Epigenesis, Genetic , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , X Chromosome/metabolism , Animals , Cdh1 Proteins/metabolism , DNA Methylation , Homeodomain Proteins/metabolism , Mice , Nanog Homeobox Protein , RNA, Long Noncoding/metabolism
16.
Nature ; 511(7511): 611-5, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25079558

ABSTRACT

In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably distributed across the genome, with local, cell-type-specific regulation directed by DNA binding factors. This comparatively static landscape is in marked contrast with the events of fertilization, during which the paternal genome is globally reprogrammed. Paternal genome demethylation includes the majority of CpGs, although methylation remains detectable at several notable features. These dynamics have been extensively characterized in the mouse, with only limited observations available in other mammals, and direct measurements are required to understand the extent to which early embryonic landscapes are conserved. We present genome-scale DNA methylation maps of human preimplantation development and embryonic stem cell derivation, confirming a transient state of global hypomethylation that includes most CpGs, while sites of residual maintenance are primarily restricted to gene bodies. Although most features share similar dynamics to those in mouse, maternally contributed methylation is divergently targeted to species-specific sets of CpG island promoters that extend beyond known imprint control regions. Retrotransposon regulation is also highly diverse, and transitions from maternally to embryonically expressed elements. Together, our data confirm that paternal genome demethylation is a general attribute of early mammalian development that is characterized by distinct modes of epigenetic regulation.


Subject(s)
Blastocyst/metabolism , DNA Methylation , Animals , Cell Line , CpG Islands/physiology , DNA/metabolism , Embryonic Stem Cells , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Mice, Inbred C57BL
17.
Cell Stem Cell ; 14(3): 329-41, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24440599

ABSTRACT

Mutations in the metabolic enzymes isocitrate dehydrogenase-1 (IDH1) and IDH2 that produce the oncometabolite D-2-hydroxyglutarate (2-HG) occur frequently in human acute myeloid leukemia (AML). 2-HG modulates numerous biological pathways implicated in malignant transformation, but the contribution of mutant IDH proteins to maintenance and progression of AML in vivo is currently unknown. To answer this crucial question we have generated transgenic mice that express IDH2(R140Q) in an on/off- and tissue-specific manner using a tetracycline-inducible system. We found that IDH2(R140Q) can cooperate with overexpression of HoxA9 and Meis1a and with mutations in FMS-like tyrosine kinase 3 (FLT3) to drive acute leukemia in vivo. Critically, we show that genetic deinduction of mutant IDH2 in leukemic cells in vivo has profound effects on their growth and/or maintenance. Our data demonstrate the proto-oncogenic role of mutant IDH2 and support its relevance as a therapeutic target for the treatment of human AML.


Subject(s)
Carcinogenesis/pathology , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/pathology , Mutation/genetics , Oncogenes , Animals , Bone Marrow/pathology , Carcinogenesis/genetics , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Erythroid Cells/metabolism , Erythroid Cells/pathology , Hematopoiesis , Hematopoietic Stem Cells/pathology , Homeodomain Proteins/metabolism , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/metabolism , Spleen/pathology , Transcription, Genetic , fms-Like Tyrosine Kinase 3/metabolism
18.
Cell Stem Cell ; 13(1): 14-21, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23827707

ABSTRACT

Over the past years we have witnessed an explosion in the generation of freely available genome-wide data sets, including maps of various histone modifications, transcription factor binding, DNase hypersensitivity, and DNA methylation, which provide valuable resources for data validation, exploration, and hypothesis generation. The goal of this review is to provide the reader with information on where to find many of the data sets and how to utilize the various (epi)genome browsers for display and initial analysis. We provide selected examples to highlight key features and demonstrate the application of these browsers to stem cell biology.


Subject(s)
Databases, Factual , Epigenomics , Genome, Human , Internet , Stem Cell Research , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...