Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 14: 35, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23374886

ABSTRACT

BACKGROUND: Drug pharmacokinetics parameters, drug interaction parameters, and pharmacogenetics data have been unevenly collected in different databases and published extensively in the literature. Without appropriate pharmacokinetics ontology and a well annotated pharmacokinetics corpus, it will be difficult to develop text mining tools for pharmacokinetics data collection from the literature and pharmacokinetics data integration from multiple databases. DESCRIPTION: A comprehensive pharmacokinetics ontology was constructed. It can annotate all aspects of in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. It covers all drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK-corpus was constructed to present four classes of pharmacokinetics abstracts: in vivo pharmacokinetics studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, and in vitro drug interaction studies. A novel hierarchical three level annotation scheme was proposed and implemented to tag key terms, drug interaction sentences, and drug interaction pairs. The utility of the pharmacokinetics ontology was demonstrated by annotating three pharmacokinetics studies; and the utility of the PK-corpus was demonstrated by a drug interaction extraction text mining analysis. CONCLUSIONS: The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. The PK-corpus is a highly valuable resource for the text mining of pharmacokinetics parameters and drug interactions.


Subject(s)
Data Mining/methods , Pharmacokinetics , Cytochrome P-450 Enzyme System/genetics , Databases, Factual , Drug Interactions , Ketoconazole/pharmacokinetics , Midazolam/pharmacokinetics , Tamoxifen/pharmacokinetics
2.
PLoS Comput Biol ; 8(8): e1002614, 2012.
Article in English | MEDLINE | ID: mdl-22912565

ABSTRACT

Drug-drug interactions (DDIs) are a common cause of adverse drug events. In this paper, we combined a literature discovery approach with analysis of a large electronic medical record database method to predict and evaluate novel DDIs. We predicted an initial set of 13197 potential DDIs based on substrates and inhibitors of cytochrome P450 (CYP) metabolism enzymes identified from published in vitro pharmacology experiments. Using a clinical repository of over 800,000 patients, we narrowed this theoretical set of DDIs to 3670 drug pairs actually taken by patients. Finally, we sought to identify novel combinations that synergistically increased the risk of myopathy. Five pairs were identified with their p-values less than 1E-06: loratadine and simvastatin (relative risk or RR = 1.69); loratadine and alprazolam (RR = 1.86); loratadine and duloxetine (RR = 1.94); loratadine and ropinirole (RR = 3.21); and promethazine and tegaserod (RR = 3.00). When taken together, each drug pair showed a significantly increased risk of myopathy when compared to the expected additive myopathy risk from taking either of the drugs alone. Based on additional literature data on in vitro drug metabolism and inhibition potency, loratadine and simvastatin and tegaserod and promethazine were predicted to have a strong DDI through the CYP3A4 and CYP2D6 enzymes, respectively. This new translational biomedical informatics approach supports not only detection of new clinically significant DDI signals, but also evaluation of their potential molecular mechanisms.


Subject(s)
Drug Interactions , Electronic Health Records , Muscular Diseases/chemically induced , Alprazolam/adverse effects , Databases, Factual , Duloxetine Hydrochloride , Humans , Indoles/adverse effects , Loratadine/adverse effects , Promethazine/adverse effects , Simvastatin/adverse effects , Thiophenes/adverse effects
3.
Article in English | MEDLINE | ID: mdl-22732690

ABSTRACT

Antimicrobial peptides (AMPs) are gaining popularity as anti-infective agents. Information on sequence features that contribute to target specificity of AMPs will aid in accelerating drug discovery programs involving them. In this study, an algorithm called ClassAMP using Random Forests (RFs) and Support Vector Machines (SVMs) has been developed to predict the propensity of a protein sequence to have antibacterial, antifungal, or antiviral activity. ClassAMP is available at http://www.bicnirrh.res.in/classamp/.


Subject(s)
Algorithms , Anti-Infective Agents/chemistry , Anti-Infective Agents/classification , Peptides/chemistry , Peptides/classification , Support Vector Machine
4.
PLoS One ; 7(4): e34480, 2012.
Article in English | MEDLINE | ID: mdl-22493694

ABSTRACT

BACKGROUND: Protein interaction networks (PINs) specific within a particular context contain crucial information regarding many cellular biological processes. For example, PINs may include information on the type and directionality of interaction (e.g. phosphorylation), location of interaction (i.e. tissues, cells), and related diseases. Currently, very few tools are capable of deriving context-specific PINs for conducting exploratory analysis. RESULTS: We developed a literature-based online system, Context-specific Protein Network Miner (CPNM), which derives context-specific PINs in real-time from the PubMed database based on a set of user-input keywords and enhanced PubMed query system. CPNM reports enriched information on protein interactions (with type and directionality), their network topology with summary statistics (e.g. most densely connected proteins in the network; most densely connected protein-pairs; and proteins connected by most inbound/outbound links) that can be explored via a user-friendly interface. Some of the novel features of the CPNM system include PIN generation, ontology-based PubMed query enhancement, real-time, user-queried, up-to-date PubMed document processing, and prediction of PIN directionality. CONCLUSIONS: CPNM provides a tool for biologists to explore PINs. It is freely accessible at http://www.biotextminer.com/CPNM/.


Subject(s)
Data Mining/methods , Protein Interaction Mapping/methods , Protein Interaction Maps , Proteins/metabolism , Software , Algorithms , Databases, Genetic , Humans , Internet , Proteins/genetics , PubMed , User-Computer Interface
5.
Article in English | MEDLINE | ID: mdl-23367189

ABSTRACT

Electronic Health Records (EHR) contain large amounts of useful information that could potentially be used for building models for predicting onset of diseases. In this study, we have investigated the use of free-text and coded data in Marshfield Clinic's EHR, individually and in combination for building machine learning based models to predict the first ever episode of atrial fibrillation and/or atrial flutter (AFF). We trained and evaluated our AFF models on the EHR data across different time intervals (1, 3, 5 and all years) prior to first documented onset of AFF. We applied several machine learning methods, including naïve bayes, support vector machines (SVM), logistic regression and random forests for building AFF prediction models and evaluated these using 10-fold cross-validation approach. On text-based datasets, the best model achieved an F-measure of 60.1%, when applied exclusively to coded data. The combination of textual and coded data achieved comparable performance. The study results attest to the relative merit of utilizing textual data to complement the use of coded data for disease onset prediction modeling.


Subject(s)
Atrial Fibrillation/diagnosis , Atrial Flutter/diagnosis , Electronic Health Records , Humans
6.
Nucleic Acids Res ; 38(Database issue): D774-80, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19923233

ABSTRACT

Antimicrobial peptides (AMPs) are gaining popularity as better substitute to antibiotics. These peptides are shown to be active against several bacteria, fungi, viruses, protozoa and cancerous cells. Understanding the role of primary structure of AMPs in their specificity and activity is essential for their rational design as drugs. Collection of Anti-Microbial Peptides (CAMP) is a free online database that has been developed for advancement of the present understanding on antimicrobial peptides. It is manually curated and currently holds 3782 antimicrobial sequences. These sequences are divided into experimentally validated (patents and non-patents: 2766) and predicted (1016) datasets based on their reference literature. Information like source organism, activity (MIC values), reference literature, target and non-target organisms of AMPs are captured in the database. The experimentally validated dataset has been further used to develop prediction tools for AMPs based on the machine learning algorithms like Random Forests (RF), Support Vector Machines (SVM) and Discriminant Analysis (DA). The prediction models gave accuracies of 93.2% (RF), 91.5% (SVM) and 87.5% (DA) on the test datasets. The prediction and sequence analysis tools, including BLAST, are integrated in the database. CAMP will be a useful database for study of sequence-activity and -specificity relationships in AMPs. CAMP is freely available at http://www.bicnirrh.res.in/antimicrobial.


Subject(s)
Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Peptides/chemistry , Algorithms , Computational Biology/trends , Databases, Protein , Genome, Bacterial , Humans , Information Storage and Retrieval/methods , Internet , Reproducibility of Results , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...