Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832370

ABSTRACT

Recently, the research of innovative building materials is focused on applying supplementary materials in the form of micro- and nanopowders in cementitious composites due to the growing insistence on sustainable development. Considering above, in paper, a research on the effect of microsilica and SiO2 nanoparticles addition to cement paste, designed with Andreasen and Andersen (AA) packing density model (PDM), in terms of its physical and mechanical properties was conducted. Density, porosity, compressive strength, hardness, and modulus of indentation were investigated and compared regarding different amount of additives used in cement paste mixes. Microstructure of the obtained pastes was analyzed. The possibility of negative influence of alkali-silica reaction (ASR) on the mechanical properties of the obtained composites was analyzed. The results of the conducted investigations were discussed, and conclusions, also practical, were presented. The obtained results confirmed that the applied PDM may be an effective tool in cement paste design, when low porosity of prepared composite is required. On the other hand, the application of AA model did not bring satisfactory results of mechanical performance as expected, what was related, as shown by SEM imaging, with inhomogeneous dispersion of microsilica, and creation of agglomerates acting as reactive aggregates, what as a consequence caused ASR reaction, crack occurrence and lowered mechanical properties. Finally, the study found that the use of about 7.5% wt. of microsilica is the optimum in regards to obtain low porosity, while, to achieve improved mechanical properties, the use of 4 wt. % of microsilica seems to be optimal, in the case of tested cement pastes.

2.
Materials (Basel) ; 14(14)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34300938

ABSTRACT

Composite materials are increasingly used to strengthen existing structures or new load-bearing elements, also made of timber. In this paper, the effect of the number of layers of Carbon Fiber Reinforced Polymer (CFRP) on the load-bearing capacity and stiffness of Glued Laminated Timber beams was determined. Experimental research was performed on 32 elements-a series of eight unreinforced beams, and three series of eight reinforced beams: with one, three and five layers of laminate each. The beams with a cross-section of 38 mm × 80 mm and a length of 750 mm were subjected to the four-point bending test according to standard procedure. For each series, destructive force, deflection, mode of failure, and equivalent stiffness were determined. In addition, for the selected samples, X-ray computed tomography was performed before and after their destruction to define the quality of the interface between wood and composite. The results of the conducted tests and analyses showed that there was no clear relationship between the number of reinforcement layers and the load-bearing capacity of the beams and their stiffness. Unreinforced beams failed due to tension, while reinforced CFRP beams failed due to shear. Despite this, a higher energy of failure of composite-reinforced elements was demonstrated in relation to the reference beams.

3.
Materials (Basel) ; 14(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924489

ABSTRACT

The paper presents and discusses selected methods of wood classification and the evaluation of its mechanical properties. Attention was mainly paid to methods that may be particularly useful for examining existing elements and structures. The possibility of estimating the modulus of rupture-MOR and modulus of elasticity-MOE based on the non- destructive (NDT), semi-destructive (SDT), and destructive tests (DT) were considered. Known international, European, and American standards and research approaches were indicated. The selected testing methods and their interpretation were presented. These were, among others, the method of visual assessment, the resistance drilling method, methods of determining the dynamic modulus of elasticity, and procedures for testing small clear specimens. Moreover, some of our own research results from the conducted experimental tests were presented and discussed. In the destructive tests, both large elements and small clear specimens were examined. The results obtained from individual methods were compared and some conclusions were presented. The summary discusses the fundamental difficulties and limitations in applying the presented procedures and interpretations.

4.
Materials (Basel) ; 13(6)2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32245228

ABSTRACT

The paper presents the results of an experimental investigation of stop-splayed scarf joints, which was carried out as part of a research programme at the Wroclaw University of Science and Technology. A brief description and the characteristics of scarf and splice joints appearing in historical buildings are provided, with special reference to stop-splayed scarf joints (so-called 'Bolt of lightning') which were widely used, for example, in Italian renaissance architecture. Analyses and studies of scarf and splice joints in bent elements presented in the literature are reviewed, along with selected examples of analyses and research on tensile joints. It is worth noting that the authors in practically all the cited literature draw attention to the need for further research in this area. Next, the results of the authors' own research on beams with stop-splayed scarf joints, strengthened using various methods, e.g., by means of drawbolts (metal screws), steel clamps and steel clamps with wooden pegs, which were subjected to four-point bending tests are presented. Load-deflection plots were obtained for load-bearing to bending of each beam in relation to the load-bearing of a continuous reference beam. A comparative analysis of the results obtained for each beam series is presented, along with conclusions and directions for further research.

5.
Materials (Basel) ; 12(9)2019 May 10.
Article in English | MEDLINE | ID: mdl-31083319

ABSTRACT

This paper presents an assessment of the condition of wood coming from a wharf timber sheet wall after 70 years of service in a (sea) water environment. Samples taken from the structure's different zones, i.e., the zone impacted by waves and characterised by variable water-air conditions, the zone immersed in water and the zone embedded in the ground, were subjected to non-destructive or semi-destructive tests. Also, the basic parameters of the material, such as its density and moisture content, were determined. Moreover, the ultrasonic, stress wave and drilling resistance methods were used. Then, an X-ray microtomographic analysis was carried out. The results provided information about the structure of the material on the micro and macroscale, and the condition of the material was assessed on their basis. Also, correlations between the particular parameters were determined. Moreover, the methods themselves were evaluated with regard to their usefulness for the in situ testing of timber and to estimate, on this basis, the mechanical parameters needed for the static load analysis of the whole structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...