Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 20(Pt 4): 555-66, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23765297

ABSTRACT

The ability of molecular dynamics (MD) simulations to support the analysis of X-ray absorption fine-structure (XAFS) data for metals is evaluated. The low-order cumulants (ΔR, σ(2), C3) for XAFS scattering paths are calculated for the metals Cu, Ni, Fe, Ti and Au at 300 K using 28 interatomic potentials of the embedded-atom method type. The MD cumulant predictions were evaluated within a cumulant expansion XAFS fitting model, using global (path-independent) scaling factors. Direct simulations of the corresponding XAFS spectra, χ(R), are also performed using MD configurational data in combination with the FEFF ab initio code. The cumulant scaling parameters compensate for differences between the real and effective scattering path distributions, and for any errors that might exist in the MD predictions and in the experimental data. The fitted value of ΔR is susceptible to experimental errors and inadvertent lattice thermal expansion in the simulation crystallites. The unadjusted predictions of σ(2) vary in accuracy, but do not show a consistent bias for any metal except Au, for which all potentials overestimate σ(2). The unadjusted C3 predictions produced by different potentials display only order-of-magnitude consistency. The accuracy of direct simulations of χ(R) for a given metal varies among the different potentials. For each of the metals Cu, Ni, Fe and Ti, one or more of the tested potentials was found to provide a reasonable simulation of χ(R). However, none of the potentials tested for Au was sufficiently accurate for this purpose.

2.
J Chem Phys ; 132(2): 024714, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20095701

ABSTRACT

Low energy ion recoil spectroscopy is a powerful technique for the determination of adsorbate position on metal surfaces. In this study, this technique is employed to compare the adsorption sites of hydrogen and deuterium on Pd(100) by detection of either H or D recoil ions produced by Ne(+) bombardment. Comparisons of experimental and Kalypso simulated azimuthal yield distributions show that, at room temperature, both hydrogen isotopes are adsorbed in the fourfold hollow site of Pd(100), however, at different heights above the surface (H-0.20 A and D-0.25 A). The adsorbates remain in the hollow site at all temperatures up to 383 K even though they move up to 0.40-0.45 A above the surface. Density functional theory calculations show a similar coverage dependent adsorption height for both H and D and confirm a real difference between the H and D adsorption heights based on zero point energies.

3.
Int J Occup Saf Ergon ; 7(3): 277-84, 2001.
Article in English | MEDLINE | ID: mdl-11543698

ABSTRACT

With the help of the research results presented here and on the basis of a graphic analysis we aim to prove the existence of a relationship between the difference in prismatic refractive power and the thickness, curvature radius, and type of material used for panoramic oculars in protective spectacles, goggles, and face shields. The difference in the prismatic refractive power is a fundamental optical characteristic of a protective ocular without corrective effect. According to Standard No. EN 165:1995 (European Committee for Standardization, 1995) the difference in the prismatic refractive power is a difference in the prismatic effect at 2 observation points of an eye-protector.


Subject(s)
Eye Protective Devices/standards , Optics and Photonics , Refraction, Ocular , Humans , Materials Testing , Polycarboxylate Cement , Polymethyl Methacrylate
SELECTION OF CITATIONS
SEARCH DETAIL
...