Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(16): 4404-4407, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582043

ABSTRACT

This manuscript presents a simple approach to the manufacturing and optimization of a multilevel phase-only diffractive conical lens (Fresnel axicon or "fraxicon"). The method for recording deep type I modifications in fused silica was established and its ability proven. We showed the prospects and limitations of elements processed using this method. The fine and advanced parameters optimization allowed us to get a compensation mechanism for almost uniform refractive index change for each separate layer. The maximum diffraction efficiency of the fraxicon for a wavelength of 515 nm was ∼80%. The measured Bessel beam depth of field was compared with commercially available conical lens axicons and showed good agreement.

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37513043

ABSTRACT

Titanium (Ti) is widely recognized for its exceptional properties and compatibility with medical applications. In our study, we successfully formed laser-induced periodic surface structures (LIPSS) on Ti plates with a periodicity of 520-740 nm and a height range of 150-250 nm. To investigate the morphology and chemical composition of these surfaces, we employed various techniques, including field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Additionally, we utilized a drop-shape analyzer to determine the wetting properties of the surfaces. To evaluate the antibacterial activity, we followed the ISO 22196:2011 standard, utilizing reference bacterial cultures of Gram-positive Staphylococcus aureus (ATCC 25923) and Gram-negative Escherichia coli (ATCC 25922). The results revealed enhanced antibacterial properties against Staphylococcus aureus by more than 99% and Escherichia coli by more than 80% in comparison with non-irradiated Ti. Furthermore, we conducted experiments using the Escherichia coli bacteriophage T4 (ATCC 11303-B4) and the bacterial host Escherichia coli (ATCC 11303) to investigate the impact of Ti plates on the stability of the bacteriophage. Overall, our findings highlight the potential of LIPSS on Ti plates for achieving enhanced antibacterial activity against common bacterial strains while maintaining the stability of bacteriophages.

3.
Opt Express ; 31(3): 4482-4496, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36785415

ABSTRACT

In this study, we demonstrate the elongated Type I modifications in fused silica with an axial length > 50 µm. Such extended longitudinal dimensions were obtained by deep focusing radiation of a femtosecond laser inside fused silica at a depth of 2 mm. The transition from the Type II modification (nanogratings) to the Type I modification (refraction index change) was observed with increasing focusing depth at the constant pulse energy. The refractive index changes of ∼ 1.5×10-3 for a single pass and 2.4×10-3 for multiple passes were demonstrated. The radial dimensions of the deep-focused modifications were confined to 0.5-1.5 µm size. By overlapping the modifications in radial and axial directions, 1D phase grating in the depth range from 2 to 5 mm was recorded, allowing to split of the beam with a diffraction efficiency of > 96%. We demonstrate that the aberration-based recording with a Gaussian beam in fused silica is a simple tool for fabricating complex phase diffractive optical elements.

4.
Micromachines (Basel) ; 11(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397123

ABSTRACT

Femtosecond laser-induced selective etching (FLISE) is a promising technology for fabrication of a wide range of optical, mechanical and microfluidic devices. Various etching conditions, together with significant process optimisations, have already been demonstrated. However, the FLISE technology still faces severe limitations for a wide range of applications due to limited processing speed and polarization-dependent etching. In this article, we report our novel results on the double-pulse processing approach on the improvement of chemical etching anisotropy and >30% faster processing speed in fused silica. The effects of pulse delay and pulse duration were investigated for further understanding of the relations between nanograting formation and etching. The internal sub-surface modifications were recorded with double cross-polarised pulses of a femtosecond laser, and a new nanograting morphology (grid-like) was demonstrated by precisely adjusting the processing parameters in a narrow processing window. It was suggested that this grid-like morphology impacts the etching anisotropy, which could be improved by varying the delay between two orthogonally polarized laser pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...