Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(24): 6546-6557, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37350831

ABSTRACT

Polyelectrolyte solutions (PESs) recently have been proposed as high conductivity, high lithium transference number (t+) electrolytes where the majority of the ionic current is carried by the electrochemically active Li-ion. While PESs are intuitively appealing because anchoring the anion to a polymer backbone selectively slows down anionic motion and therefore increases t+, increasing the anion charge will act as a competing effect, decreasing t+. In this work we directly measure ion mobilities in a model non-aqueous polyelectrolyte solution using electrophoretic Nuclear Magnetic Resonance Spectroscopy (eNMR) to probe these competing effects. While previous studies that rely on ideal assumptions predict that PESs will have higher t+ than monomeric solutions, we demonstrate that below the entanglement limit, both conductivity and t+ decrease with increasing degree of polymerization. For polyanions of 10 or more repeat units, at 0.5 m Li+ we directly observe Li+ move in the "wrong direction" in an electric field, evidence of a negative transference number due to correlated motion through ion clustering. This is the first experimental observation of negative transference in a non-aqueous polyelectrolyte solution. We also demonstrate that t+ increases with increasing Li+ concentration. Using Onsager transport coefficients calculated from experimental data, and insights from previously published molecular dynamics studies we demonstrate that despite selectively slowing anion motion using polyanions, distinct anion-anion correlation through the polymer backbone and cation-anion correlation through ion aggregates reduce the t+ in non-entangled PESs. This leads us to conclude that short-chained polyelectrolyte solutions are not viable high transference number electrolytes. These results emphasize the importance of understanding the effects of ion-correlations when designing new concentrated electrolytes for improved battery performance.

2.
J Pharm Sci ; 109(1): 696-708, 2020 01.
Article in English | MEDLINE | ID: mdl-31726055

ABSTRACT

A systematic understanding of intermolecular interactions is necessary for designing concentrated monoclonal and polyclonal antibody solutions with reduced viscosity and enhanced stability. Here, we determine the effects of pH and cosolute on the strength and geometry of short-range anisotropic protein-protein attractions for a polyclonal bovine IgG by comparing intensities [I(q)] obtained from small-angle X-ray scattering to those computed in molecular dynamics simulations with 12-bead models. As our model embodies key features of the protein shape, it can describe the experimental I(q) for solutions of 10-200 mg/mL protein with only a small (<1 kBT) variation in the model's well depth. At high concentration, small changes in the interaction potential produce large increases in clustering given the close interprotein spacing. Reducing the pH below the pI or adding NaCl weakens short-range anisotropic attractions but not enough to remove large reversible oligomers that raise viscosity. In contrast, for arginine added at pH 5.5, a uniform attraction model is sufficient to describe the I(q) that plateaus at low q. With primarily monomers and dimers, the viscosity is reduced relative to the other systems that have larger clusters as described with a model that includes the cluster size distribution.


Subject(s)
Immunoglobulin G/chemistry , Molecular Dynamics Simulation , Scattering, Small Angle , X-Ray Diffraction , Animals , Cattle , Drug Compounding , Drug Stability , Hydrogen-Ion Concentration , Protein Aggregates , Protein Stability , Sodium Chloride/chemistry , Viscosity
3.
Soft Matter ; 15(33): 6660-6676, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31389467

ABSTRACT

The dynamic behavior of monoclonal antibodies (mAbs) at high concentration provides insight into protein microstructure and protein-protein interactions (PPI) that influence solution viscosity and protein stability. At high concentration, interpretation of the collective-diffusion coefficient Dc, as determined by dynamic light scattering (DLS), is highly challenging given the complex hydrodynamics and PPI at close spacings. In contrast, self-diffusion of a tracer particle by Brownian motion is simpler to understand. Herein, we develop fluorescence correlation spectroscopy (FCS) for the measurement of the long-time self-diffusion of mAb2 over a wide range of concentrations and viscosities in multiple co-solute formulations with varying PPI. The normalized self-diffusion coefficient D0/Ds (equal to the microscopic relative viscosity ηeff/η0) was found to be smaller than η/η0. Smaller ratios of the microscopic to macroscopic viscosity (ηeff/η) are attributed to a combination of weaker PPI and less self-association. The interaction parameters extracted from fits of D0/Ds with a length scale dependent viscosity model agree with previous measurements of PPI by SLS and SAXS. Trends in the degree of self-association, estimated from ηeff/η with a microviscosity model, are consistent with oligomer sizes measured by SLS. Finally, measurements of collective diffusion and osmotic compressibility were combined with FCS data to demonstrate that the changes in self-diffusion between formulations are due primarily to changes in the protein-protein friction in these systems, and not to protein-solvent friction. Thus, FCS is a robust and accessible technique for measuring mAb self-diffusion, and, by extension, microviscosity, PPI and self-association that govern mAb solution dynamics.


Subject(s)
Antibodies, Monoclonal/chemistry , Biophysical Phenomena , Diffusion , Fluorescence , Fluorescent Dyes/chemistry , Microscopy, Fluorescence , Models, Chemical , Protein Multimerization , Protein Stability , Solutions , Viscosity
4.
J Phys Chem B ; 123(25): 5274-5290, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31146525

ABSTRACT

Attractive protein?protein interactions (PPI) in concentrated monoclonal antibody (mAb) solutions may lead to reversible oligomers (clusters) that impact colloidal stability and viscosity. Herein, the PPI are tuned for two mAbs via the addition of arginine (Arg), NaCl, or ZnSO4 as characterized by the structure factor ( Seff( q)) with small-angle X-ray scattering (SAXS). The SAXS data are fit with molecular dynamics simulations by placing a physically relevant short-range attractive interaction on selected beads in coarse-grained 12-bead models of the mAb shape. The optimized 12-bead models are then used to differentiate key microstructural properties, including center of mass radial distribution functions ( gCOM( r)), coordination numbers, and cluster size distributions (CSD). The addition of cosolutes results in more attractive Seff( q) relative to the no cosolute control for all systems tested, with the most attractive systems showing an upturn at low q. Only the All1 model with an attractive site in each Fab and Fc region (possessing Fab?Fab, Fab?Fc, and Fc?Fc interactions) can reproduce this upturn, and the corresponding CSDs show the presence of larger clusters compared to the control. In general, for models with similar net attractions, i.e., second osmotic virial coefficients, the size of the clusters increases as the attraction is concentrated on a smaller number of evenly distributed beads. The cluster size distributions from simulations are used to improve the understanding and prediction of experimental viscosities. The ability to discriminate between models with bead interactions at particular Fab and Fc bead sites from SAXS simulations, and to provide real-space properties (CSD and gCOM( r)), will be of interest in engineering protein sequence and formulating protein solutions for weak PPI to minimize aggregation and viscosities.


Subject(s)
Antibodies, Monoclonal/chemistry , Molecular Dynamics Simulation , Antibodies, Monoclonal/metabolism , Arginine/chemistry , Protein Interaction Maps , Scattering, Small Angle , Sodium Chloride/chemistry , Viscosity , X-Ray Diffraction
5.
J Phys Chem B ; 123(4): 739-755, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30614707

ABSTRACT

The ability to design and formulate mAbs to minimize attractive interactions at high concentrations is important for protein processing, stability, and administration, particularly in subcutaneous delivery, where high viscosities are often challenging. The strength of protein-protein interactions (PPIs) of an IgG1 and IgG4 monoclonal antibody (mAb) from low to high concentration was determined by static light scattering (SLS) and used to understand viscosity data. The PPI were tuned using NaCl and five organic ionic co-solutes. The PPI strength was quantified by the normalized structure factor S(0)/ S(0)HS and Kirkwood-Buff integral G22/ G22,HS (HS = hard sphere) determined from the SLS data and also by fits with (1) a spherical Yukawa potential and (2) an interacting hard sphere (IHS) model, which describes attraction in terms of hypothetical oligomers. The IHS model was better able to capture the scattering behavior of the more strongly interacting systems (mAb and/or co-solute) than the spherical Yukawa potential. For each descriptor of PPI, linear correlations were obtained between the viscosity at high concentration (200 mg/mL) and the interaction strengths evaluated both at low (20 mg/mL) and high concentrations (200 mg/mL) for a given mAb. However, the only parameter that provided a correlation across both mAbs was the oligomer mass ratio ( moligomer/ mmonomer+dimer) from the IHS model, indicating the importance of self-association (in addition to the direct influence of the attractive PPI) on the viscosity.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Immunoglobulin G/immunology , Light , Scattering, Radiation , Protein Binding , Solutions , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...