Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 37(7): 766-70, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15965474

ABSTRACT

MicroRNAs are noncoding RNAs of approximately 22 nucleotides that suppress translation of target genes by binding to their mRNA and thus have a central role in gene regulation in health and disease. To date, 222 human microRNAs have been identified, 86 by random cloning and sequencing, 43 by computational approaches and the rest as putative microRNAs homologous to microRNAs in other species. To prove our hypothesis that the total number of microRNAs may be much larger and that several have emerged only in primates, we developed an integrative approach combining bioinformatic predictions with microarray analysis and sequence-directed cloning. Here we report the use of this approach to clone and sequence 89 new human microRNAs (nearly doubling the current number of sequenced human microRNAs), 53 of which are not conserved beyond primates. These findings suggest that the total number of human microRNAs is at least 800.


Subject(s)
Genome, Human , MicroRNAs/analysis , Base Sequence , Conserved Sequence , Humans , Microarray Analysis , Molecular Sequence Data , Nucleic Acid Conformation , Sequence Alignment , Sequence Analysis, DNA
2.
Genome Res ; 14(12): 2486-94, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15574827

ABSTRACT

MicroRNAs (MIRs) are a novel group of conserved short approximately 22 nucleotide-long RNAs with important roles in regulating gene expression. We have established a MIR-specific oligonucleotide microarray system that enables efficient analysis of the expression of the human MIRs identified so far. We show that the 60-mer oligonucleotide probes on the microarrays hybridize with labeled cRNA of MIRs, but not with their precursor hairpin RNAs, derived from amplified, size-fractionated, total RNA of human origin. Signal intensity is related to the location of the MIR sequences within the 60-mer probes, with location at the 5' region giving the highest signals, and at the 3' end, giving the lowest signals. Accordingly, 60-mer probes harboring one MIR copy at the 5' end gave signals of similar intensity to probes containing two or three MIR copies. Mismatch analysis shows that mutations within the MIR sequence significantly reduce or eliminate the signal, suggesting that the observed signals faithfully reflect the abundance of matching MIRs in the labeled cRNA. Expression profiling of 150 MIRs in five human tissues and in HeLa cells revealed a good overall concordance with previously published results, but also with some differences. We present novel data on MIR expression in thymus, testes, and placenta, and have identified MIRs highly enriched in these tissues. Taken together, these results highlight the increased sensitivity of the DNA microarray over other methods for the detection and study of MIRs, and the immense potential in applying such microarrays for the study of MIRs in health and disease.


Subject(s)
DNA Probes/genetics , Gene Expression Regulation , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis/methods , Base Sequence , Cluster Analysis , Female , Gene Expression Profiling , HeLa Cells , Humans , Male , MicroRNAs/genetics , Nucleic Acid Hybridization , Placenta/metabolism , Sequence Alignment , Testis/metabolism , Thymus Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...